Pitt analysis questions use of acute hemodialysis treatment

Their findings, published online in the journal PLOS One, suggest acute hemodialysis, an aggressive method that is standardly used for people with sudden kidney failure, may not provide a definitive benefit to the patient.

“Our findings question the accepted notion that acute hemodialysis decreases mortality,” said Amber Barnato, M.D., senior author of the study and associate professor of clinical and translational science at the Pitt School of Medicine. Dr. Barnato acknowledges that the study is far from conclusive because it lacks detailed clinical data.

“It is impossible to draw conclusions based on an observational study, but I do wonder whether it is time to do a clinical trial on the timing and delivery of acute hemodialysis in the context of acute renal failure and critical illness.”

Dr. Barnato and her team examined records for 2,131,248 patients admitted to Pennsylvania hospitals between October 2005 and December 2007. Some of the patients had varying degrees of kidney failure without end-stage renal disease; 6,657 of those patients had received acute hemodialysis. At one year, patients who received acute hemodialysis had nearly twice the risk of death as similarly ill patients who did not receive acute hemodialysis.

“The most striking finding is the increased mortality risk for patients who received acute hemodialysis, even after risk adjustment which limited the sample to the sickest patients,” said lead author Sarah Ramer, M.D., now of Rutgers New Jersey Medical School, who performed much of the research while a Clinical Scientist Training Program medical student at Pitt.

“We know that there is variation in how doctors decide if and when to dialyze a hopspitalized patient. If patients given acute hemodialysis are not carefully chosen, some patients might end up not being helped by the treatment.”

###

Additional authors on the study are Elan D. Cohen, M.S., and Chung-Chou H. Chang, Ph.D., both of the University of Pittsburgh; and Mark L. Unruh, M.D., now of the University of New Mexico School of Medicine.

Funding for this research was provided by a Doris Duke Clinical Research Fellowship and National Institutes of Health grant R01AG035112.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu.

http://www.upmc.com/media

Media Contact

Rick Pietzak Eurek Alert!

More Information:

http://www.upmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors