Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pirate-like flies connect symbiosis to diversity

06.02.2013
After a year of studying up close the symbiotic relationship between a mosquito-sized bug and a fungus, a Simon Fraser University biologist has advanced the scientific understanding of biological diversity.

Jeffrey Joy has discovered that symbiosis — a relationship between two or more organisms that can be parasitic or mutualistic — is as much the mother of biological diversity as predation and competition.

The Proceedings of the Royal Society of London Series B journal has just published the post-doctoral researcher's findings online. They advance Joy's previous doctoral work under SFU biologist Bernard Crespi that led to a paper, in the same journal, about the remarkable diversity of plant feeding insects.

Joy's latest paper is Symbiosis catalyzes niche expansion and diversification.

After comparing the niche and species diversification of two categories of gall-inducing flies, Joy has concluded that prolific diversity can be a hallmark of symbiotic relationships. No bigger than a speck of dust on your fingertip, these flies (Diptera: Cecidomyiidae) are ubiquitous worldwide, with more than 6100 species.

Joy found one group (617 families) of these flies was in a symbiotic relationship with a fungus called Botryosphaeria. Another, much larger control group (2809 families) had no such relationship with the fungus.

Scientists are not yet certain how the fly and fungus came together in the first place. But Joy has discovered that their relationship has evolved at least four different times, since the two first saw symbiosis — as opposed to love — at first sight.

Flies involved with the fungi have developed the ability to pick up the fungi, store them in biological pockets and deposit them on plants. There, the flies use the fungi to turn plant tissue into food inside a gall, a tumour-like structure that the flies cause on the plant.

"The flies are like pirates," explains Joy. "They use the fungi as boats to float across a genomic sea and board a plant that is genetically far removed from what they would otherwise be able to feed on."

The fungus, which is a broad-feeding plant pathogen, allows the flies to feed on a greater variety of plants compared to their non-symbiotic brethren.

"Symbiotic lineages of these flies have undergone a more than seven-fold expansion in the range of plants they can feed on relative to the lineages without such fungal symbionts. Also, one genus of gall-inducing flies utilizing fungal symbionts is 50 per cent more diverse than its brethren without the symbiotic relationship."

Joy is as excited about discovering how symbiosis between flies and fungi advances evolutionary theories as he is about discovering the relationship itself.

"The goal of this work was to test predictions of evolutionary theories of diversification and symbiosis," explains Joy. "The theory I observed in action is that the evolution of symbiosis catalyzes niche expansion — an organism's use of more resources — and diversification — increased species in lineages.

"These findings expand our understanding of how biological diversity is generated and how processes, such as symbiosis, lead to some remarkable examples of biology, such as the symbiotic mutualism between clownfish and sea anemone."

Simon Fraser University
Public Affairs and Media Relations (PAMR)
778.782.3210 www.sfu.ca/pamr/
Contact: Jeffery Joy (East Vancouver resident), 604.368.5569 (cell), jbjoy@sfu.ca

Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Flickr: http://at.sfu.ca/IAFccb

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>