Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering stem cell bandage receives approval for clinical trial

06.06.2011
Millions of people with knee injuries could benefit from new stem cell bandage

Millions of people with knee injuries could benefit from a new type of stem cell bandage treatment if clinical trials are successful. The world's first clinical trial for the treatment of patients with torn meniscal cartilage has received approval from the UK regulatory agency, the MHRA1, to commence.

The current treatment for the majority of tears is the removal of the meniscus, a procedure that often results in the early onset of osteoarthritis.

The Phase I trial, one of the first in the UK to be approved using stem cells, will treat meniscal tear patients with a cell bandage product, seeded with the patient's own, expanded, stem cells.

The cell bandage, produced by Azellon Ltd, a University of Bristol spin-out company, is focused on the research, development and commercialisation of an adult autologous (patient's own) stem cell technology which in vitro (tissue culture) has shown great promise for the healing of meniscal tears.

The trial is designed primarily to test the safety profile of Azellon's cell bandage in ten meniscal tear patients, but some information on whether or not it works will also be obtained. The bandage, containing the patient's own stem cells will be implanted in a simple surgical procedure using a specially designed instrument that helps to deliver the cells into the injured site as a first-line treatment in place of removal of the meniscus. Patients will be closely monitored for safety over a five-year follow-up period.

Professor Anthony Hollander, Chief Scientific Officer at Azellon Ltd and Head of the School of Cellular and Molecular Medicine at the University of Bristol, said: "The approval we have received from the MHRA is an important milestone in the development of stem cell therapies in the UK. These cells hold much scientific and medical promise but we can only know if they work or not by testing them out in clinical trials."

Professor Ashley Blom, Professor of Orthopaedic Surgery at the University of Bristol, added: "The effective repair of meniscal tears would represent a significant advance in treatment, particularly for younger patients and athletes by reducing the likelihood of early onset osteoarthritis, and would offer an exciting new treatment option for surgeons."

More than 900,000 patients have meniscal tears every year in Europe with perhaps 800,000 to one million meniscal repairs in US making the total market 1.7 million meniscal tears per year. Seven per cent of meniscal surgeries are repairs in the 'red' zone, the rest (1,581,000 tears) remain total or partial menisectomies. Meniscus tears normally occur in active and younger people (estimated 80 per cent of meniscal patients are younger than 50). Meniscus tear is a common sports injury and is especially prevalent amongst competitive athletes in football (including US and Australian rules), rugby and basketball. Patients who have partial or total menisectomy have an increased risk of developing osteoarthritis over the following 4.5 to eight years.

Azellon Ltd is funded by the Wellcome Trust, Technology Strategy Board and early stage investors IPGroup, Oxford Technology and Wyvern Seedcorn fund.

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>