Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering stem cell bandage receives approval for clinical trial

06.06.2011
Millions of people with knee injuries could benefit from new stem cell bandage

Millions of people with knee injuries could benefit from a new type of stem cell bandage treatment if clinical trials are successful. The world's first clinical trial for the treatment of patients with torn meniscal cartilage has received approval from the UK regulatory agency, the MHRA1, to commence.

The current treatment for the majority of tears is the removal of the meniscus, a procedure that often results in the early onset of osteoarthritis.

The Phase I trial, one of the first in the UK to be approved using stem cells, will treat meniscal tear patients with a cell bandage product, seeded with the patient's own, expanded, stem cells.

The cell bandage, produced by Azellon Ltd, a University of Bristol spin-out company, is focused on the research, development and commercialisation of an adult autologous (patient's own) stem cell technology which in vitro (tissue culture) has shown great promise for the healing of meniscal tears.

The trial is designed primarily to test the safety profile of Azellon's cell bandage in ten meniscal tear patients, but some information on whether or not it works will also be obtained. The bandage, containing the patient's own stem cells will be implanted in a simple surgical procedure using a specially designed instrument that helps to deliver the cells into the injured site as a first-line treatment in place of removal of the meniscus. Patients will be closely monitored for safety over a five-year follow-up period.

Professor Anthony Hollander, Chief Scientific Officer at Azellon Ltd and Head of the School of Cellular and Molecular Medicine at the University of Bristol, said: "The approval we have received from the MHRA is an important milestone in the development of stem cell therapies in the UK. These cells hold much scientific and medical promise but we can only know if they work or not by testing them out in clinical trials."

Professor Ashley Blom, Professor of Orthopaedic Surgery at the University of Bristol, added: "The effective repair of meniscal tears would represent a significant advance in treatment, particularly for younger patients and athletes by reducing the likelihood of early onset osteoarthritis, and would offer an exciting new treatment option for surgeons."

More than 900,000 patients have meniscal tears every year in Europe with perhaps 800,000 to one million meniscal repairs in US making the total market 1.7 million meniscal tears per year. Seven per cent of meniscal surgeries are repairs in the 'red' zone, the rest (1,581,000 tears) remain total or partial menisectomies. Meniscus tears normally occur in active and younger people (estimated 80 per cent of meniscal patients are younger than 50). Meniscus tear is a common sports injury and is especially prevalent amongst competitive athletes in football (including US and Australian rules), rugby and basketball. Patients who have partial or total menisectomy have an increased risk of developing osteoarthritis over the following 4.5 to eight years.

Azellon Ltd is funded by the Wellcome Trust, Technology Strategy Board and early stage investors IPGroup, Oxford Technology and Wyvern Seedcorn fund.

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>