Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering stem cell bandage receives approval for clinical trial

06.06.2011
Millions of people with knee injuries could benefit from new stem cell bandage

Millions of people with knee injuries could benefit from a new type of stem cell bandage treatment if clinical trials are successful. The world's first clinical trial for the treatment of patients with torn meniscal cartilage has received approval from the UK regulatory agency, the MHRA1, to commence.

The current treatment for the majority of tears is the removal of the meniscus, a procedure that often results in the early onset of osteoarthritis.

The Phase I trial, one of the first in the UK to be approved using stem cells, will treat meniscal tear patients with a cell bandage product, seeded with the patient's own, expanded, stem cells.

The cell bandage, produced by Azellon Ltd, a University of Bristol spin-out company, is focused on the research, development and commercialisation of an adult autologous (patient's own) stem cell technology which in vitro (tissue culture) has shown great promise for the healing of meniscal tears.

The trial is designed primarily to test the safety profile of Azellon's cell bandage in ten meniscal tear patients, but some information on whether or not it works will also be obtained. The bandage, containing the patient's own stem cells will be implanted in a simple surgical procedure using a specially designed instrument that helps to deliver the cells into the injured site as a first-line treatment in place of removal of the meniscus. Patients will be closely monitored for safety over a five-year follow-up period.

Professor Anthony Hollander, Chief Scientific Officer at Azellon Ltd and Head of the School of Cellular and Molecular Medicine at the University of Bristol, said: "The approval we have received from the MHRA is an important milestone in the development of stem cell therapies in the UK. These cells hold much scientific and medical promise but we can only know if they work or not by testing them out in clinical trials."

Professor Ashley Blom, Professor of Orthopaedic Surgery at the University of Bristol, added: "The effective repair of meniscal tears would represent a significant advance in treatment, particularly for younger patients and athletes by reducing the likelihood of early onset osteoarthritis, and would offer an exciting new treatment option for surgeons."

More than 900,000 patients have meniscal tears every year in Europe with perhaps 800,000 to one million meniscal repairs in US making the total market 1.7 million meniscal tears per year. Seven per cent of meniscal surgeries are repairs in the 'red' zone, the rest (1,581,000 tears) remain total or partial menisectomies. Meniscus tears normally occur in active and younger people (estimated 80 per cent of meniscal patients are younger than 50). Meniscus tear is a common sports injury and is especially prevalent amongst competitive athletes in football (including US and Australian rules), rugby and basketball. Patients who have partial or total menisectomy have an increased risk of developing osteoarthritis over the following 4.5 to eight years.

Azellon Ltd is funded by the Wellcome Trust, Technology Strategy Board and early stage investors IPGroup, Oxford Technology and Wyvern Seedcorn fund.

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>