Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinpointing a tell-tale mark of liver cancer

11.07.2011
A newly identified gene variant could lead to predictive tests for a major cause of cancer-related deaths

Persistent hepatitis C virus (HCV) infection can lead to chronic hepatitis C and then progress to fatal liver diseases including liver cirrhosis and liver cancer, the third most common cause of cancer-related deaths.

Worldwide, more than 170 million people are infected with HCV, and the virus accounts for 30–70% of liver cancer cases. The recent identification of a genetic variant associated with increased susceptibility to hepatitis C virus-induced liver cancer could have major implications for global healthcare, as it may lead to tests that predict liver cancer susceptibility.

Michiaki Kubo of the RIKEN Center for Genomic Medicine and colleagues from RIKEN and The University of Tokyo discovered the variant by analyzing the entire genomes of 721 Japanese individuals with HCV-induced liver cancer and comparing them with those of 2,890 HCV-negative controls1. This allowed them to identify variants potentially associated HCV-induced liver cancer . They confirmed the association of one variant by replicating the study in another 673 liver cancer patients and 2,596 controls.

This variant was located within a region on chromosome 6, which contains many genes that are critical for immune system function. It lies between the genes encoding MICA, a membrane protein that activates the anti-tumor effects of white blood cells, and the HLA-B gene, which encodes a peptide that enables the immune system to distinguish between the body’s own proteins and those produced by invading microbes.

The researchers checked the variant in another 1,730 individuals with chronic hepatitis C who had not developed liver cirrhosis or liver cancer, and revealed that it was significantly associated with progression from chronic hepatitis C to liver cancer, but not with susceptibility to chronic hepatitis C.

Finally, Kubo and colleagues examined MICA protein levels in patients with chronic hepatitis C and HCV-induced liver cirrhosis, and found that the level of MICA in blood samples was elevated during early stages of the disease compared to healthy controls. They also found that the identified variant was correlated with low MICA levels in patients with chronic hepatitis C.

These findings suggest that individuals carrying the genetic variant would express low levels of MICA. This in turn would lead to reduced response by white blood cells to cells infected with viruses, increasing the likelihood of progression from chronic hepatitis C to liver cancer.

“Our results suggest that low serum MICA levels are a marker for higher susceptibility to progression of liver cancer in the patients with chronic hepatitis C,” says Kubo.

The corresponding author for this highlight is based at the Laboratory for Genotyping Development, RIKEN Center for Genomics Medicine

Reference:
Kumar, V., Kato, N., Urabe, Y., Takahashi, A., Muroyama, R., Hosono, N., Otsuka, M., Tateishi, R., Omata, M., Nakagawa, H. et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nature Genetics 43, 455–458 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>