Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Pink Gene

What makes a particular variety of tomato pink? The gene responsible, discovered recently at the Weizmann Institute, may help researchers develop new exotic tomatoes.

Far Eastern diners are partial to a variety of sweet, pink-skinned tomato. Dr. Asaph Aharoni of the Weizmann Institute's Plant Sciences Department has now revealed the gene that's responsible for producing these pink tomatoes. Aharoni's research focuses on plants' thin, protective outer layers, called cuticles, which are mainly composed of fatty, wax-like substances.

In the familiar red tomato, this layer also contains large amounts of antioxidants called flavonoids that are the tomatoes' first line of defense. Some of these flavonoids also give the tomato cuticles a bright yellow cast - the color component that is missing in the translucent pink skins of the mutants.

Using a lab system that's unique in Israel, and one of only a few in the world, Aharoni and his team are able to rapidly and efficiently identify hundreds of active plant substances called metabolites. A multidisciplinary approach developed over the past decade, known as metabolomics, enables them to create a comprehensive profile of all these substances in mutant plants and compare it with that of normal ones.

The research, carried out in Aharoni's lab by Dr. Avital Adato, Dr. Ilana Rogachev and research student Tali Mendel, showed that the differences between pink and red tomatoes go much deeper than skin color: The scientists identified about 400 genes whose activity levels are quite a bit higher or lower in the mutant tomatoes. The largest changes, appearing in both the plant cuticle and the fruit covering, were in the production of substances in the flavonoid family. The pink tomato also has less lycopene, a red pigment known to be a strong antioxidant that's been shown to be associated with reduced risk of cancer, heart disease and diabetes. In addition, alterations in the fatty composition of the pink tomato's outer layer caused its cuticle to be both thinner and less flexible that a regular tomato skin.

The researchers found that all of these changes can be traced to a mutation on a single gene known as SIMYB12. This gene acts as a 'master switch' that regulates the activities of a whole network of other genes, controlling the amounts of yellow pigments as well as a host of other substances in the tomato. Aharoni: 'Since identifying the gene, we found we could use it as a marker to predict the future color of the fruit in the very early stages of development, even before the plant has flowered. This ability could accelerate efforts to develop new, exotic tomato varieties, a process that can generally take over 10 years.'

Dr. Asaph Aharoni's research is supported by the De Benedetti Foundation-Cherasco 1547; and the Willner Family Foundation. Dr. Aharoni is the incumbent of the Adolpho and Evelyn Blum Career Development Chair of Cancer Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at, and are also available at

Yivsam Azgad | idw
Further information:

Further reports about: SIMYB12 Science TV Single gene Weizmann antioxidants metabolites

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>