Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigs and dogs can bridge gap between mice and humans in developing new therapies

16.12.2008
Human and veterinary medicine could receive a big boost through use of larger animals, especially pigs and dogs, in research, with Europe at the forefront.

There is the prospect of bringing drugs to the market more quickly at less cost, as well as accelerating progress in other forms of therapy, notably the use of stem cells in regenerative medicine.

The potential in this new field was discussed at a recent workshop organised by the European Science Foundation (ESF), which called for a European pig clinic to facilitate generation and characterisation of models of human disease that would be funded within the EU's Seventh Framework programme, the main source of EU funding for research projects.

The immediate goal in the field is to establish a common standardised way of using animals with clearly defined characteristics (phenotypes), so that results can be compared across Europe. "The workshop showed that there is excellent expertise in individual labs, but the phenotypic tests need to be harmonised and standardised to facilitate comparison of results obtained in different labs," said Angelika Schnieke, one of the workshop's convenors, who holds the chair of Livestock Biotechnology at the Centre of Life Science in Weihenstephan, Germany.

Such standardisation has already been achieved for rodents, particularly the mouse, which is the most widely used animal model at present for human disease research. The extension of such a framework to pigs and dogs will bring great rewards not just for human medicine, but also for treatment of animal diseases. "Large animals offer a link between the classical rodent models and application in the clinic," said Schnieke.

"In view of the close genetic, anatomical and physiological similarities between dog and pig on the one side and human on the other, large animal models are likely to catalyse drug development." As Schnieke added, large animals would also help pursue other therapeutic avenues beyond drug development, including new medical technologies, devices and interventions. Large animals could also be used for research in a number of disease categories, including cancer, metabolic disorders such as obesity, and regenerative therapies, such as use of stem cells to replace damaged heart muscle.

The workshop focused particularly on pigs and dogs because these two animals are quite similar in scale and anatomy to humans, while serving quite complementary functions. Dogs could be used as models for studying the immediate consequences of infectious disease, while pigs could be genetically engineered to mimic certain human conditions, such as deficiencies in the immune system. In such cases pigs would be used like mice are at present to model certain aspects of human immunity or metabolic disorder, but with the advantage of being closer to us in many respects.

"A possible idea is the generation of pigs with a humanised immune system," said Schnieke. "The proof of principle has been shown in the mouse. Immune-deficient mice can be reconstituted with human immune cells and can be used to study immune reactions, for example against tissue xenografts (transplantation of tissue between species, such as pig to human). In theory this could also be possible in pigs. Therefore the generation of immune-deficient pigs is an important goal."

But further funding is required to develop suitable pig models, possibly within a European pig clinic. The workshop also discussed setting up smaller collaborative projects focussed on specific disease areas, with a view to obtaining funding from the ESF. A task force was established to pursue these goals.

The workshop Large Animal Models for Biomedicine was held in Freising, Germany, in September 2008.

For more information http://www.esf.org/activities/exploratory-workshops/workshops-list/workshops-detail.html?ew=6503

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>