Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigment discovery expanding into new colors

28.07.2011
Chemists at Oregon State University have discovered that the same crystal structure they identified two years ago to create what may be the world’s best blue pigment can also be used with different elements to create other colors, with significant potential in the paint and pigment industries.

First on the list, appropriately, is a brilliant orange pigment – appropriate for the OSU Beavers whose team colors are black and orange, and a university in a “Powered by Orange” advancement campaign.

But the broader potential for these pigments, researchers say, is the ability to tweak essentially the same chemical structure in slightly different ways to create a whole range of new colors in pigments that may be safer to produce, more durable and more environmentally benign than many of those that now exist.

Among the possibilities, they say, are colors that should be of interest to OSU’s athletic rival 40 miles down the road at the University of Oregon – yellow and green.

“The basic crystal structure we’re using for these pigments was known before, but no one had ever considered using it for any commercial purpose, including pigments,” said Mas Subramanian, the Milton Harris Professor of Materials Science in the OSU Department of Chemistry.

“All of these colors should share the same characteristics of being extremely stable, durable, and resistant to heat and acid,” he said. “And they are based on the same crystal structure, so minor adjustments to the technology will produce very different colors and very high quality pigments.”

OSU has already applied for a patent on this technology, samples are now being tested by private industry, and the latest findings were published recently in Inorganic Chemistry, a journal of the American Chemical Society. The research has been supported by the National Science Foundation.

This invention evolved from what was essentially an accidental discovery in 2009 in an OSU lab, where Subramanian was exploring some manganese oxides for interesting electronic properties. At one stage of the process, when a sample had been heated to almost 2,000 degrees Fahrenheit, the compound turned a vivid blue.

It was found that this chemistry had interesting properties that affects the absorption of light and consequently its color. So Subramanian and his research team, including OSU professor emeritus Art Sleight, quickly shifted their electronics research into what may become a revolution in the paint and pigment industry. Future applications may range from inkjet printers to automobiles or even ordinary house paint.

The work created, at first, a beautiful blue pigment, which had properties that had eluded humans for thousands of years, dating back to the Han dynasty in China, ancient Egyptians and Mayan culture. Most previous blue pigments had various problems with toxicity, durability and vulnerability to heat or acid. Some are carcinogenic, others emit cyanide.

Expanding that research, the scientists further studied this unusual “trigonal-bypyramidal coordination” of crystalline structure, atoms that are combined in a certain five-part coordinated network. The initial blue color in the pigment came from the manganese used in the compound. The scientists have now discovered that the same structure will produce other colors simply by substituting different elements.

“The new orange pigment is based on iron, and we might use copper and titanium for a green pigment,” Subramanian said. “Yellow and deep brown should be possible, and we should be able to make a new red pigment. A lot of red pigments are now made with cadmium and mercury, which can be toxic.

“These should all be very attractive for commercial use,” he said.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Mas Subramanian | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: CHEMISTRY OSU Oregon Pigment Science TV Subramanian crystal structure manganese oxide red pigment

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>