Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How pigeons may smell their way home

06.11.2013
Homing pigeons, like other birds, are extraordinary navigators, but how they manage to find their way back to their lofts is still debated.

To navigate, birds require a ‘map’ (to tell them home is south, for example) and a ‘compass’ (to tell them where south is), with the sun and the Earth’s magnetic field being the preferred compass systems.

A new paper provides evidence that the information pigeons use as a map is in fact available in the atmosphere: odours and winds allow them to find their way home. The results are now published in Biogeosciences, an open access journal of the European Geosciences Union (EGU).

Experiments over the past 40 years have shown that homing pigeons get disoriented when their sense of smell is impaired or when they don’t have access to natural winds at their home site. But many researchers were not convinced that wind-borne odours could provide the map pigeons need to navigate. Now, Hans Wallraff of the Max Planck Institute for Ornithology in Seewiesen, Germany, has shown that the atmosphere does contain the necessary information to help pigeons find their way home.

In previous research, Wallraff collected air samples at over 90 sites within a 200 km radius around a former pigeon loft near Würzburg in southern Germany. The samples revealed that the ratios among certain ‘volatile organic compounds’ (chemicals that can be a source of scents and odours) in the atmosphere increase or decrease along specific directions. “For instance, the percentage of compound A in the sum A+B or A+B+C+D increases the farther one moves from north to south,” Wallraff explains.

These changes in compound ratios translate into changes in perceived smell. But a pigeon that has never left its loft does not know in what directions what changes occur – unless it has been exposed to winds at its home site.

At home, a bird is thought to associate certain smells with particular wind directions. “If the percentage of compound A increases with southerly winds, a pigeon living in a loft in Würzburg learns this wind-correlated increase. If released at a site some 100 km south of home, the bird smells that the ratio of compound A is above what it is on average at its loft and flies north,” Wallraff explains. To use an analogy, a person in Munich could smell an Alpine breeze when there is wind blowing from the south. When displaced closer to the mountains, they would detect a strong Alpine scent and remember that, at home, that smell is associated with southerly winds: the person would know that, roughly, they needed to travel north to find home.

But this explanation of how pigeons might use wind-borne odours to find their loft was just a hypothesis: Wallraff still needed to prove that the atmosphere does indeed contain the basis of the map system pigeons need to navigate. In the new Biogeosciences paper, he develops a model showing that ‘virtual pigeons’ with only knowledge of winds and odours at home, can find their way back to their lofts by using real atmospheric data.

“My virtual pigeons served as tools to select those volatile compounds whose spatial distributions, combined with variations dependent on wind direction, were most suitable for homeward navigation,” explains Wallraff.

The model uses an iterative approach to imitate animal evolution by introducing random mutations in the virtual pigeons, making them most sensitive to those volatile compounds that are most effective for navigation. By selecting the best mutations in the course of thousands of generations, the model creates virtual pigeons capable of finding their bearings as well as real pigeons, showing that even inexperienced birds could use atmospheric information for navigation. The findings present a missing piece in the puzzle of homing pigeon navigation, confirming that winds and odours can indeed work as a map system.

“Work with real pigeons was the beginning of the story. In this research, I wanted to find out whether and in what way the chemical atmosphere fulfils the demands for avian navigation. Eventually, to identify the chemical compounds birds actually use for home-finding, we will need real birds again. But this is far in the future.”

*More information*
This research is presented in the paper ‘Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results’ by Hans Wallraff (Max Planck Institute for Ornithology, Seewiesen, Germany) published in the EGU open access journal Biogeosciences on 04 November 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper (http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html) or to the journal website (http://www.biogeosciences.net/).

Full citation: Wallraff, H. G.: Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results, Biogeosciences, 10, 6929-6943, doi:10.5194/bg-10-6929-2013, 2013.

The *European Geosciences Union (http://www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the press release subscription form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Hans Wallraff
Max Planck Institute for Ornithology
Seewiesen, Germany
Tel: +49-89-8503-361
Email: wallraff@orn.mpg.de
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.egu.eu/news/81/how-pigeons-may-smell-their-way-home/
(release on the EGU website)
http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html
(scientific paper)
http://www.biogeosciences.net/
(Biogeosciences journal)

Dr. Bárbara Ferreira | idw
Further information:
http://www.egu.eu
http://www.biogeosciences.net/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>