Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How pigeons may smell their way home

06.11.2013
Homing pigeons, like other birds, are extraordinary navigators, but how they manage to find their way back to their lofts is still debated.

To navigate, birds require a ‘map’ (to tell them home is south, for example) and a ‘compass’ (to tell them where south is), with the sun and the Earth’s magnetic field being the preferred compass systems.

A new paper provides evidence that the information pigeons use as a map is in fact available in the atmosphere: odours and winds allow them to find their way home. The results are now published in Biogeosciences, an open access journal of the European Geosciences Union (EGU).

Experiments over the past 40 years have shown that homing pigeons get disoriented when their sense of smell is impaired or when they don’t have access to natural winds at their home site. But many researchers were not convinced that wind-borne odours could provide the map pigeons need to navigate. Now, Hans Wallraff of the Max Planck Institute for Ornithology in Seewiesen, Germany, has shown that the atmosphere does contain the necessary information to help pigeons find their way home.

In previous research, Wallraff collected air samples at over 90 sites within a 200 km radius around a former pigeon loft near Würzburg in southern Germany. The samples revealed that the ratios among certain ‘volatile organic compounds’ (chemicals that can be a source of scents and odours) in the atmosphere increase or decrease along specific directions. “For instance, the percentage of compound A in the sum A+B or A+B+C+D increases the farther one moves from north to south,” Wallraff explains.

These changes in compound ratios translate into changes in perceived smell. But a pigeon that has never left its loft does not know in what directions what changes occur – unless it has been exposed to winds at its home site.

At home, a bird is thought to associate certain smells with particular wind directions. “If the percentage of compound A increases with southerly winds, a pigeon living in a loft in Würzburg learns this wind-correlated increase. If released at a site some 100 km south of home, the bird smells that the ratio of compound A is above what it is on average at its loft and flies north,” Wallraff explains. To use an analogy, a person in Munich could smell an Alpine breeze when there is wind blowing from the south. When displaced closer to the mountains, they would detect a strong Alpine scent and remember that, at home, that smell is associated with southerly winds: the person would know that, roughly, they needed to travel north to find home.

But this explanation of how pigeons might use wind-borne odours to find their loft was just a hypothesis: Wallraff still needed to prove that the atmosphere does indeed contain the basis of the map system pigeons need to navigate. In the new Biogeosciences paper, he develops a model showing that ‘virtual pigeons’ with only knowledge of winds and odours at home, can find their way back to their lofts by using real atmospheric data.

“My virtual pigeons served as tools to select those volatile compounds whose spatial distributions, combined with variations dependent on wind direction, were most suitable for homeward navigation,” explains Wallraff.

The model uses an iterative approach to imitate animal evolution by introducing random mutations in the virtual pigeons, making them most sensitive to those volatile compounds that are most effective for navigation. By selecting the best mutations in the course of thousands of generations, the model creates virtual pigeons capable of finding their bearings as well as real pigeons, showing that even inexperienced birds could use atmospheric information for navigation. The findings present a missing piece in the puzzle of homing pigeon navigation, confirming that winds and odours can indeed work as a map system.

“Work with real pigeons was the beginning of the story. In this research, I wanted to find out whether and in what way the chemical atmosphere fulfils the demands for avian navigation. Eventually, to identify the chemical compounds birds actually use for home-finding, we will need real birds again. But this is far in the future.”

*More information*
This research is presented in the paper ‘Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results’ by Hans Wallraff (Max Planck Institute for Ornithology, Seewiesen, Germany) published in the EGU open access journal Biogeosciences on 04 November 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper (http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html) or to the journal website (http://www.biogeosciences.net/).

Full citation: Wallraff, H. G.: Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results, Biogeosciences, 10, 6929-6943, doi:10.5194/bg-10-6929-2013, 2013.

The *European Geosciences Union (http://www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the press release subscription form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Hans Wallraff
Max Planck Institute for Ornithology
Seewiesen, Germany
Tel: +49-89-8503-361
Email: wallraff@orn.mpg.de
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.egu.eu/news/81/how-pigeons-may-smell-their-way-home/
(release on the EGU website)
http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html
(scientific paper)
http://www.biogeosciences.net/
(Biogeosciences journal)

Dr. Bárbara Ferreira | idw
Further information:
http://www.egu.eu
http://www.biogeosciences.net/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>