Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How pigeons may smell their way home

06.11.2013
Homing pigeons, like other birds, are extraordinary navigators, but how they manage to find their way back to their lofts is still debated.

To navigate, birds require a ‘map’ (to tell them home is south, for example) and a ‘compass’ (to tell them where south is), with the sun and the Earth’s magnetic field being the preferred compass systems.

A new paper provides evidence that the information pigeons use as a map is in fact available in the atmosphere: odours and winds allow them to find their way home. The results are now published in Biogeosciences, an open access journal of the European Geosciences Union (EGU).

Experiments over the past 40 years have shown that homing pigeons get disoriented when their sense of smell is impaired or when they don’t have access to natural winds at their home site. But many researchers were not convinced that wind-borne odours could provide the map pigeons need to navigate. Now, Hans Wallraff of the Max Planck Institute for Ornithology in Seewiesen, Germany, has shown that the atmosphere does contain the necessary information to help pigeons find their way home.

In previous research, Wallraff collected air samples at over 90 sites within a 200 km radius around a former pigeon loft near Würzburg in southern Germany. The samples revealed that the ratios among certain ‘volatile organic compounds’ (chemicals that can be a source of scents and odours) in the atmosphere increase or decrease along specific directions. “For instance, the percentage of compound A in the sum A+B or A+B+C+D increases the farther one moves from north to south,” Wallraff explains.

These changes in compound ratios translate into changes in perceived smell. But a pigeon that has never left its loft does not know in what directions what changes occur – unless it has been exposed to winds at its home site.

At home, a bird is thought to associate certain smells with particular wind directions. “If the percentage of compound A increases with southerly winds, a pigeon living in a loft in Würzburg learns this wind-correlated increase. If released at a site some 100 km south of home, the bird smells that the ratio of compound A is above what it is on average at its loft and flies north,” Wallraff explains. To use an analogy, a person in Munich could smell an Alpine breeze when there is wind blowing from the south. When displaced closer to the mountains, they would detect a strong Alpine scent and remember that, at home, that smell is associated with southerly winds: the person would know that, roughly, they needed to travel north to find home.

But this explanation of how pigeons might use wind-borne odours to find their loft was just a hypothesis: Wallraff still needed to prove that the atmosphere does indeed contain the basis of the map system pigeons need to navigate. In the new Biogeosciences paper, he develops a model showing that ‘virtual pigeons’ with only knowledge of winds and odours at home, can find their way back to their lofts by using real atmospheric data.

“My virtual pigeons served as tools to select those volatile compounds whose spatial distributions, combined with variations dependent on wind direction, were most suitable for homeward navigation,” explains Wallraff.

The model uses an iterative approach to imitate animal evolution by introducing random mutations in the virtual pigeons, making them most sensitive to those volatile compounds that are most effective for navigation. By selecting the best mutations in the course of thousands of generations, the model creates virtual pigeons capable of finding their bearings as well as real pigeons, showing that even inexperienced birds could use atmospheric information for navigation. The findings present a missing piece in the puzzle of homing pigeon navigation, confirming that winds and odours can indeed work as a map system.

“Work with real pigeons was the beginning of the story. In this research, I wanted to find out whether and in what way the chemical atmosphere fulfils the demands for avian navigation. Eventually, to identify the chemical compounds birds actually use for home-finding, we will need real birds again. But this is far in the future.”

*More information*
This research is presented in the paper ‘Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results’ by Hans Wallraff (Max Planck Institute for Ornithology, Seewiesen, Germany) published in the EGU open access journal Biogeosciences on 04 November 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper (http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html) or to the journal website (http://www.biogeosciences.net/).

Full citation: Wallraff, H. G.: Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results, Biogeosciences, 10, 6929-6943, doi:10.5194/bg-10-6929-2013, 2013.

The *European Geosciences Union (http://www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the press release subscription form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Hans Wallraff
Max Planck Institute for Ornithology
Seewiesen, Germany
Tel: +49-89-8503-361
Email: wallraff@orn.mpg.de
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.egu.eu/news/81/how-pigeons-may-smell-their-way-home/
(release on the EGU website)
http://www.biogeosciences.net/10/6929/2013/bg-10-6929-2013.html
(scientific paper)
http://www.biogeosciences.net/
(Biogeosciences journal)

Dr. Bárbara Ferreira | idw
Further information:
http://www.egu.eu
http://www.biogeosciences.net/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>