Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigeons fly home with a map in their heads

25.07.2013
It is a fascinating phenomenon that homing pigeons always find their way home.

A doctoral student in biology at the University of Zurich has now carried out experiments proving that pigeons have a spatial map and thus possess cognitive capabilities. In unknown territories, they recognize where they are in relation to their loft and are able to choose their targets themselves.


Pigeon fitted with miniature GPS logger
Picture: UZH

Homing pigeons fly off from an unknown place in unfamiliar territory and still manage to find their way home. Their ability to find their way home has always been fascinating to us humans. Despite intensive research, it is not yet definitively clear where this unusual gift comes from.

All we know is that homing pigeons and migratory birds determine their flight direction with the help of the Earth’s magnetic field, the stars and the position of the sun. As Nicole Blaser, a doctoral student in biology at the University of Zurich demonstrates in the «Journal of Experimental Biology», homing pigeons navigate using a mental map.

Navigating like a robot or cognitive capabilities?

Research proposes two approaches to explain how homing pigeons can find their home loft when released from an unfamiliar place. The first version assumes that pigeons compare the coordinates of their current location with those of the home loft and then systematically reduce the difference between the two until they have brought the two points together. If this version is accurate, it would mean that pigeons navigate like flying robots. The second version accords the pigeons a spatial understanding and «knowledge» of their position in space relative to their home loft. This would presuppose a type of mental map in their brain and thus cognitive capabilities. Up until now, there has not been any clear evidence to support the two navigation variants proposed.

For their experiments, Blaser and her colleagues fitted homing pigeons with miniature GPS loggers in order to monitor the birds’ flight paths. Beforehand the researchers trained the pigeons not to obtain food in the home loft, as was normally the case otherwise. «We fed the pigeons in a second loft around thirty kilometers away, from where they each had to fly back to their home loft», says Blaser, explaining the structure of the experiment. The scientists then brought the pigeons to a third place unknown to the pigeons in completely unfamiliar territory. This release site was in turn thirty kilometers from the home loft and the food loft. Natural obstacles obscured visual contact between the release site and the two lofts. One group of the pigeons was allowed to eat until satiated before flying home. The other group was kept hungry before starting off. Blaser explained: «With this arrangement, we wanted to find out whether the hungry pigeons fly first to the home loft and from there to the food loft or whether they are able to fly directly to the food loft.»

Fed pigeons fly home, hungry pigeons fly to the food loft

«As we expected, the satiated pigeons flew directly to the home loft», explains Prof. Hans-Peter Lipp, neuroanatomist at UZH and Blaser’s supervisor for her doctoral thesis. «They already started on course for their loft and only deviated from that course for a short time to make topography-induced detours.» The hungry pigeons behaved quite differently, setting off on course for the food loft from the very beginning and flying directly to that target. They also flew around topographical obstacles and then immediately adjusted again to their original course. Based on this procedure, Blaser concludes that pigeons can determine their location and their direction of flight relative to the target and can choose between several targets. They thus have a type of cognitive navigational map in their heads and have cognitive capabilities. «Pigeons use their heads to fly», jokes the young biologist.

Literature:
N. Blaser, G. Dell’Ariccia, G. Dell’Omo, D. P. Wolfer and H.-P. Lipp. Testing cognitive navigation in unknown territories: homing pigeons choose different targets. Journal of Experimental Biology 216. July 24, 2013, doi: 10.1242/jeb.083246
Contacts:
Prof. Hans-Peter Lipp
Institute of Anatomy
University of Zurich
E-mail: hplipp@anatom.uzh.ch
Nicole Blaser
Institute of Anatomy
University of Zurich
Phone: + 41 44 635 52 89
E-mail: nicole.blaser@anatom.uzh.ch
www.anatom.uzh.ch/research/DivisionLipp/GroupMembers_en.htm

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>