Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pig model of cystic fibrosis improves understanding of disease

17.03.2011
The new model provides insight on how the CF gene mutation causes disease, and may provide a useful system to test therapies targeting the effects of the mutation

It's been more than 20 years since scientists first discovered the gene that causes cystic fibrosis (CF), yet questions about how the mutated gene causes disease remain unanswered.

Using a newly created pig model that genetically replicates the most common form of cystic fibrosis, University of Iowa researchers have now shown that the CF protein is "misprocessed" in the pigs and does not end up in the correct cellular location. This glitch leads to disease symptoms, including gastrointestinal abnormalities and lung disease in the pigs, which mimic CF in humans. The findings are published in the March 16 issue of the journal Science Translational Medicine.

The findings match earlier laboratory experiments that suggested the gene mutation disrupts the process whereby the CF protein is folded into its correct shape and shipped to the membranes of cells that line the airways and other organs.

When it is correctly located at the cell membrane, this protein -- called cystic fibrosis transmembrane conductance regulator (CFTR) -- forms a channel to allow chloride ions to move in and out of cells. This ion movement is a critical component of the system that maintains salt and water balance across cell membranes in the lung as well as other organs and supports normal membrane function including eradicating bacteria from cell surfaces.

The new study shows that in pigs, the CFTR protein behaves the same way in a living animal as it does in experimental cell systems, suggesting that these experimental systems are useful for learning about the CFTR protein's properties. The cell systems and the new pig model may also be helpful in testing therapies designed to increase the amount of protein that gets to the cell membrane, or boost the activity of the protein that is located at the membrane.

"Instead of just trying to treat the symptoms of CF, current research is moving toward therapies that target mutations in the CFTR gene," said David Stoltz, M.D., Ph.D., UI assistant professor of internal medicine and senior study author. "For example, there already are drugs known as "correctors" being tested. These drugs help CFTR move from inside the cell to its correct location on the cell surface.

"The pig model could help us develop and test more corrector drugs, and it will also help us better understand why the protein is misprocessed in the first place," Stoltz added. "If we understand what is going wrong, we may be able to develop new therapies that can target the problem and allow more of the CFTR to make it to the cell surface, which may alleviate the disease symptoms."

In 2008, the UI team and colleagues at University of Missouri created pigs that were missing the CFTR protein. These animals developed CF disease symptoms that closely mimicked the human disease. In the new pig model, the animals have two copies of the CFTR gene containing the most common CF-causing mutation, which is known as the delta F508 mutation. These pigs also develop CF symptoms similar to the human disease. In particular, the CF pigs are born with gastrointestinal disease and develop lung disease over time.

By studying the protein in the pigs, the researchers were able to show that most of the CFTR protein is misprocessed and gets degraded, but a small amount of the protein does get to the cell membrane where it is able to form active chloride channels. However, the level of activity is only about 6 percent of the activity found in normal pigs with fully functional CFTR channels. The study shows that this small amount of CFTR activity is not sufficient to prevent CF disease in the pigs.

CF is a recessive disease, meaning a person with one mutated copy and one good copy of the CFTR gene is a "carrier" but does not have CF. This suggests that 50 percent of normal CFTR activity is sufficient for health. The question has always been, 'Is there a minimal amount of active CFTR that would be enough to protect people from the disease symptoms?'

"We know that people with 50 percent CFTR function have no disease, and now we know that 6 percent of full activity is not enough to prevent disease in the pigs," Stoltz said. "We still don't know how much CFTR is enough to prevent the disease, but this model animal could give us a way to investigate."

In addition to Stoltz, the UI research team included senior author Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics and a Howard Hughes Medical Institute investigator, and co-first authors, Lynda Ostedgaard, Ph.D.; David Meyerholz, D.V.M., Ph.D.; and Jeng-Haur Chen, Ph.D.

This work was a collaboration between UI scientists and scientists at the University of Missouri including Dr. Randall Prather and members of his research team.

Researchers from the UI Departments of Internal Medicine, Pathology, Surgery and Pediatrics were also part of the team.

The study was funded in part by grants from the National Institutes of Health and the Cystic Fibrosis Foundation.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>