Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Picower: 1 Skull + 2 Brains = 4 Objects in Mind

21.06.2011
In the 1983 movie “A Man with Two Brains,” Steve Martin kept his second brain in a jar. In reality, he had two brains inside his own skull — as we all do, one on the left and one on the right hemisphere. When it comes to seeing the world around us, each of our two brains works independently and each has its own bottleneck for working memory.

Normally, it takes years or decades after a brand new discovery about the brain for any practical implications to emerge. But this study by MIT neuroscientists could be put to immediate use in designing more effective cognitive therapy, smarter brain games, better “heads up displays,” and much more. The study will appear on the website of the Proceedings of the National Academy of Sciences on Monday, June 20, 2011.

Researchers have known for over a hundred years that we can only hold about four things in our minds at once. This capacity limitation of our working memory (our mental sketchpad) varies somewhat among individuals, and the more you can hold in mind at once, the more complex your thoughts and the higher your IQ tends to be. But although this limitation is a fundamental feature of cognition and intelligence, researchers knew nothing about its neural basis.

Monkeys, amazingly, have the same working memory capacity as humans, so Earl Miller, the Picower Professor of Neuroscience in MIT’s Picower Institute for Learning and Memory, and Timothy Buschman, a post doctoral researcher in his lab, investigated the neural basis of this capacity limitation in two monkeys performing the same test used to explore working memory in humans. First the researchers displayed an array of two to five colored squares, then a blank screen, and then the same array in which one of the squares changed colored. The task was to detect this change and look at the changed square.

As the monkeys performed this task, Buschman recorded simultaneously from neurons in two brain areas related to encoding visual perceptions (the parietal cortex) and holding them in mind (the prefrontal cortex). As expected, the more squares in the array, the worse the performance.

“But surprisingly, we found that monkeys, and by extension humans, do not have a general capacity in the brain,” says Miller. “Rather, they have two independent, smaller capacities in the right and left halves of the visual space. It was as if two separate brains — the two cerebral hemispheres — were looking at different halves of visual space.”

In other words, monkeys, and by extension humans, do not have a capacity of four objects, but of two plus two. If the object to remember appears on the right side of the visual space, it does not matter how many objects are on the left side. The left may contain five objects, but as long as the right side contains only two, monkeys easily remember it. Conversely, if the right side contains three objects and the left side only one, their capacity for remembering the key object on the right is exceeded and so they may forget it.

This study resolves two long-standing debates in the field. Does our working memory function like slots, and after our four slots are filled with objects we cannot take in any more; or does it function like a pool that can accept more than four objects, but as the pool fills the information about each object gets thinner? And is the capacity limit a failure of perception, or of memory?

“Our study shows that both the slot and pool models are true,” says Miller. “The two hemispheres of the visual brain work like slots, but within each slot, it’s a pool. We also found that the bottleneck is not in the remembering, it is in the perceiving.” That is, when the capacity for each slot is exceeded, the information does not get encoded very well. The neural recordings showed information about the objects being lost even as the monkeys were viewing them, not later as they were remembering what they had seen.

This effect in visual working memory may not hold for other forms of memory, but visual perception is one of the primary ways that humans process the world, so its impact is both far reaching in terms of understanding the brain and human consciousness and in practical terms.

“The fact that we have different capacities in each hemisphere implies that we should present information in a way that does not overtax one hemisphere while under-taxing the other,” explains Buschman. “For example, heads-up displays (transparent projections of information that a driver or pilot would normally need to look down at the dashboard to see) show a lot of data. Our results suggest that you want to put that information evenly on both sides of the visual field to maximize the amount of information that gets into the brain.”

Likewise, cognitive therapies for improving working memory (and in brain games designed to keep it young and nimble) should present information in a way that trains each hemisphere separately. Biomedical monitors that currently have one column of information should balance it in right and left columns, and security personnel could take in more information if displays scrolled vertically rather than horizontally, which wastes the independent capacities on the right and left. The researchers are forming collaborations to develop many of these ideas.

Their next basic research project is to discover why this perceptual bottleneck occurs in the first place, Miller says. “That would give us a deep understanding of how the brain represents information and would give us the first real insights into consciousness.”

This research was funded by the National Institutes of Health and the National Institute of Mental Health.

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: Brains Mind Picower brain area health services skull visual perception working memory

More articles from Life Sciences:

nachricht Researchers at IST Austria define function of an enigmatic synaptic protein
22.11.2017 | Institute of Science and Technology Austria

nachricht Women and lung cancer – the role of sex hormones
22.11.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>