Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The physics of going viral

28.06.2012
Caltech researchers measure the rate of DNA transfer from viruses to bacteria

Researchers at the California Institute of Technology (Caltech) have been able, for the first time, to watch viruses infecting individual bacteria by transferring their DNA, and to measure the rate at which that transfer occurs.


A cartoon schematic (top) and raw data (bottom) showing a lambda bacteriophage attached to an E. coli cell with the phage's DNA labeled with a fluorescent dye. The phage injects its viral DNA into the cell, and as the ejection proceeds, the dye molecules are transferred. Once inside the cell, the dye redistributes to the bacterium's genome, causing the whole cell to light up. Credit: Nigel Orme

Shedding light on the early stages of infection by this type of virus—a bacteriophage—the scientists have determined that it is the cells targeted for infection, rather than the amount of genetic material within the viruses themselves, that dictate how quickly the bacteriophage's DNA is transferred.

"The beauty of our experiment is we were able to watch individual viruses infecting individual bacteria,"says Rob Phillips, the Fred and Nancy Morris Professor of Biophysics and Biology at Caltech and the principal investigator on the new study. "Other studies of the rate of infection have involved bulk measurements. With our methods, you can actually watch as a virus shoots out its DNA."

The new methods and results are described in a paper titled "A Single-Molecule Hershey–Chase Experiment," which will appear in the July 24 issue of the journal Current Biology and currently appears online. The lead authors of that paper, David Van Valen and David Wu, completed the work while graduate students in Phillips's group.

In the well-known 1952 Hershey-Chase experiment, Alfred Hershey and Martha Chase of the Carnegie Institution of Washington in Cold Spring Harbor convincingly confirmed earlier claims that DNA—and not protein—was the genetic material in cells. To prove this, the researchers used bacteriophages, which are able to infect bacteria using heads of tightly bundled DNA coated in a protein shell. Hershey and Chase radiolabeled sulfur, contained in the protein shell but not in the DNA, and phosphorous, found in the DNA but not in the protein shell. Then they let the bacteriophages infect the bacterial cells. When they isolated the cells and analyzed their contents, they found that only the radioactive phosphorous had made its way into the bacteria, proving that DNA is indeed the genetic material. The results also showed that, unlike the viruses that infect humans, bacteriophages transmit only their genetic information into their bacterial targets, leaving their "bodies" behind.

"This led, right from the get-go, to people wondering about the mechanism—about how the DNA gets out of the virus and into the infected cell," Phillips says. Several hypotheses have focused on the fact that the DNA in the virus is under a tremendous amount of pressure. Indeed, previous work has shown that the genetic material is under more pressure within its protein shell than champagne experiences in a corked bottle. After all, as Phillips says, "There are 16 microns [16,000 nanometers] of DNA in a tiny 50-nanometer-sized shell. It's like taking 500 meters of cable from the Golden Gate Bridge and putting it in the back of a FedEx truck."

Phillips's group wanted to find out whether that pressure plays a dominant role in transferring the DNA. Instead, he says, "What we discovered is that the thing that mattered most was not the pressure in the bacteriophage, but how much DNA was in the bacterial cell."

The researchers used a fluorescent dye to stain the DNA of two mutants of a bacteriophage known as lambda bacteriophage—one with a short genome and one with a longer genome—while that DNA was still inside the phage. Using a fluorescence microscope, they traced the glowing dye to see when and over what time period the viral DNA transferred from each phage into an E. coli bacterium. The mean ejection time was about five minutes, though that time varied considerably.

This was markedly different from what the group had seen previously when they ran a similar experiment in a test tube. In that earlier setup, they had essentially tricked the bacteriophages into ejecting their DNA into solution—a task that the phages completed in less than 10 seconds. In that case, once the phage with the longer genome had released enough DNA to make what remained inside the phage equal in length to the shorter genome, the two phages ejected DNA at the same rate. Therefore, Phillips's team reasoned, it was the amount of DNA in the phage that determined how quickly the DNA was transferred.

But Phillips says, "What was true in the test tube is not true in the cell." E. coli cells contain roughly 3 million proteins within a box that is roughly one micron (1,000 nanometers) on each side. Less than 10 nanometers separate each protein from its neighbors. "There's no room for anything else," Phillips says. "These cells are really crowded."

And so, when the bacteriophages try to inject their DNA into the cells, the factor that limits the rate of transfer is how jam-packed those cells are. "In this case," Phillips says, "it had more to do with the recipient, and less to do with the pressure that had built up inside the phage."

Looking toward the future, Phillips is interested in using the methods he and his team have developed to study different types of bacteriophages. He also wants to investigate various molecules that could be helping to actively pull the viral DNA into the cells. In the case of a bacteriophage called T7, for instance, previous work has shown that the host cell actually grabs onto the DNA and begins making copies of its genes before the virus has even delivered all the DNA into the cell. "We're curious whether that kind of mechanism is in play with the lambda bacteriophage," Phillips says.

The current findings have implications for the larger question of how biomolecules like DNA and proteins cross membranes in general, and not just into bacteria. Cells are full of membranes that divide them into separate compartments and that separate entire cells from the rest of the world. Much of the business of cellular life involves getting molecules across those barriers. "This process that we've been studying is one of the most elementary examples of what you could call polymer translocation or getting macromolecules across membranes," Phillips says. "We are starting to figure out the physics behind that process."

In addition to Phillips, Van Valen, and Wu, the other authors on the Current Biology paper are graduate student Yi-Ju Chen; Hannah Tuson of the University of Wisconsin at Madison; and Paul Wiggins of the University of Washington. Van Valen is currently a medical student at UCLA's David Geffen School of Medicine, and Wu is an intern at the University of Chicago. The work was supported by funding from the National Science Foundation, a National Institutes of Health Medical Scientist Training Program fellowship, a Fannie and John Hertz Yaser Abu-Mostafa Graduate Fellowship, and an NIH Director's Pioneer Award.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>