Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist detects movement of macromolecules engineered into our food

13.09.2011
Professor Rikard Blunck receives the Society of General Physiologists' Cranefield Award for his breakthrough

Toxin proteins are genetically engineered into our food because they kill insects by perforating body cell walls, and Professor Rikard Blunck of the University of Montreal's Group for the study of membrane proteins (GÉPROM) has detected the molecular mechanism involved.

In recognition of his breakthrough, he received the Traditional Paul F. Cranefield Award of the Society of General Physiologists yesterday evening. "This study is about gaining a better understanding of the basic functioning of the toxin proteins in order to judge the risks of using them as pesticides for our nutrition," Dr. Blunck explained.

The Cry1Aa toxin of B. thuringiensis that was investigated is a member of the class of proteins which are called "pore-forming toxins" because they perforate the walls, or membranes, of cells. Cry toxins kill insect larvae if ingested by them and are, therefore, genetically engineered into a number of transgenic crops, including those for human consumption, to make them resistant against these insects.

The pores in the membranes cause minerals necessary for the cell to live to break out and collapse the energy household of the cell. While these toxins could be studied outside of cell membranes through existing techniques that provide images of the 3D structure, the toxins rapidly change their architecture once in contact with the membrane, where the traditional approaches cannot be applied.

Dr. Blunck and his co-workers found a way of using fluorescent light to analyze the architecture and mechanism of the proteins in an artificial cell wall environment. Planar lipid bilayer (PLB) are artificial 0.1 mm-wide systems that mimic the cell membrane. The researchers developed a chip to investigate proteins introduced into these artificial cell walls with fluorescent light waves. Molecular fluorescent probes are coupled to the toxin proteins. If the proteins now enter the artificial membranes and change their structure, their architecture and movement and even their distribution can be followed – thanks to the developed technique - by the fluorescent light they are emitting.

"By watching the toxin in both its active and inactive state, and by measuring the dynamic changes of the light emitted by the molecular probes, we were able to determine which parts of it were interacting with the membrane to cause the pores." Dr. Blunck explained. "We expect the technique to be applied to a wide range of disease-causing toxins in future."

About the study:

"Rapid topology probing using fluorescence spectroscopy in planar lipid bilayer: the pore-forming mechanism of the toxin Cry1Aa of Bacillus thuringiensis" was published in the Journal of General Physiology by Rikard Bunck, Nicolas Groulx and Marc Juteau of the University of Montreal. The study received funding from the Natural Sciences and Engineering Research Council, the Canada Research Chairs, the Canadian Foundation for Innovation, the Fonds de la recherché en santé du Québec and the Fonds québécois de la recherché sur la nature et les technologies. The University of Montreal is officially known as Université de Montréal.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Cry1Aa Merit Award cell membrane cell walls fluorescent light physicist proteins

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>