Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist detects movement of macromolecules engineered into our food

13.09.2011
Professor Rikard Blunck receives the Society of General Physiologists' Cranefield Award for his breakthrough

Toxin proteins are genetically engineered into our food because they kill insects by perforating body cell walls, and Professor Rikard Blunck of the University of Montreal's Group for the study of membrane proteins (GÉPROM) has detected the molecular mechanism involved.

In recognition of his breakthrough, he received the Traditional Paul F. Cranefield Award of the Society of General Physiologists yesterday evening. "This study is about gaining a better understanding of the basic functioning of the toxin proteins in order to judge the risks of using them as pesticides for our nutrition," Dr. Blunck explained.

The Cry1Aa toxin of B. thuringiensis that was investigated is a member of the class of proteins which are called "pore-forming toxins" because they perforate the walls, or membranes, of cells. Cry toxins kill insect larvae if ingested by them and are, therefore, genetically engineered into a number of transgenic crops, including those for human consumption, to make them resistant against these insects.

The pores in the membranes cause minerals necessary for the cell to live to break out and collapse the energy household of the cell. While these toxins could be studied outside of cell membranes through existing techniques that provide images of the 3D structure, the toxins rapidly change their architecture once in contact with the membrane, where the traditional approaches cannot be applied.

Dr. Blunck and his co-workers found a way of using fluorescent light to analyze the architecture and mechanism of the proteins in an artificial cell wall environment. Planar lipid bilayer (PLB) are artificial 0.1 mm-wide systems that mimic the cell membrane. The researchers developed a chip to investigate proteins introduced into these artificial cell walls with fluorescent light waves. Molecular fluorescent probes are coupled to the toxin proteins. If the proteins now enter the artificial membranes and change their structure, their architecture and movement and even their distribution can be followed – thanks to the developed technique - by the fluorescent light they are emitting.

"By watching the toxin in both its active and inactive state, and by measuring the dynamic changes of the light emitted by the molecular probes, we were able to determine which parts of it were interacting with the membrane to cause the pores." Dr. Blunck explained. "We expect the technique to be applied to a wide range of disease-causing toxins in future."

About the study:

"Rapid topology probing using fluorescence spectroscopy in planar lipid bilayer: the pore-forming mechanism of the toxin Cry1Aa of Bacillus thuringiensis" was published in the Journal of General Physiology by Rikard Bunck, Nicolas Groulx and Marc Juteau of the University of Montreal. The study received funding from the Natural Sciences and Engineering Research Council, the Canada Research Chairs, the Canadian Foundation for Innovation, the Fonds de la recherché en santé du Québec and the Fonds québécois de la recherché sur la nature et les technologies. The University of Montreal is officially known as Université de Montréal.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Cry1Aa Merit Award cell membrane cell walls fluorescent light physicist proteins

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>