Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photosynthesis re-wired

Boston College chemists use nanowires to power photosynthesis
Harnessing the power of the sun has inspired scientists and engineers to look for ways to turn sunlight into clean energy to heat houses, fuel factories and power devices. While a majority of this research focuses on energy production, some researchers are looking at the potential uses of these novel solar technologies in other areas.

Boston College Assistant Professor of Chemistry Dunwei Wang's work with silicon nanowires and his related construct, Nanonets, has shown these stable, tiny wire-like structures can be used in processes ranging from energy collection to hydrogen-generating water-splitting.

Teaming up with fellow Boston College Assistant Professor of Chemistry Kian L. Tan, the researchers have taken aim at a role for nanowires in photosynthesis.

Their work has produced a process that closely resembles photosynthesis, employing silicon nanowires to collect light energy to power reactions capable of synthesizing the basic compounds of two popular pain-killing, anti-inflammatory drugs, they report in the current edition of Angewandte Chemie, the journal of the German Chemical Society.

The reaction sequence offers an approach that differs from earlier attempts to sequester carbon dioxide with sunlight and solves the vexing problem of carbon's low selectivity, which so far has limited earlier methods to the production of fuels. Tan and Wang report their process offers the selectivity required to produce complex organic intermediaries capable of developing pharmaceuticals and high-value chemicals.

The process succeeds in taming stubborn carbon, which structurally resists most efforts to harness it for a single chemical product. Typically, refined forms of carbon molecules must first be produced to produce the necessary results.

"If we can start to use carbon dioxide and light to power reactions in organic chemistry, there's a huge benefit to that. It allows you to bypass the middle man of fossil fuels by using light to drive the chemical reaction," said Tan. "The key is the interaction of two fields – materials and synthetic chemistry. Separately, these fields may not have accomplished this on their own. But together, we combined our knowledge to make it work."

During photosynthesis, plants capture sunlight and use this solar energy and carbon dioxide to fuel chemical reactions.

Tan and Wang used silicon nanowires as a photocathode, exploiting the wire's efficient means of converting solar energy to electrical energy. Electrons released from the atoms in the nanowires are then transferred to organic molecules to trigger chemical reactions.

In this case, the researchers used aromatic ketones, which when struck by electrons become active and attack and bind carbon dioxide. Further steps produced an acid that allowed the team to create the precursors to ibuprofen and naproxen with high selectivity and high yield, the team reports.

Tan and Wang were joined in the research by Research Assistant Guangbi Yuan, PhD '12, graduate student Rui Liu, doctoral student Candice L. Joe, and former doctoral student Thomas E. Lightburn, PhD '11.

Tan said it is no accident that the process so closely resembles natural photosynthesis, as chemists are constantly drawing inspiration from nature in their work.

"Researchers in my field are always drawing inspiration from nature," said Tan. "You take the basic lessons and you try to do it in an artificial way. In this work, we're trying to learn lessons from nature, although we can't copy nature directly."

Ed Hayward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>