Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New photosensitive film converts light into kinetic energy, bends when irradiated

05.11.2010
Researchers at RIKEN have successfully developed a revolutionary new polymer film that changes shape upon irradiation with UV and visible light.

Researchers at RIKEN have successfully developed a revolutionary new polymer film that changes shape upon irradiation with UV and visible light.

Described in Science, the film is the largest-ever example of a material whose molecular elements are ordered in three dimensions on a macroscopic length scale, marking a breakthrough in techniques for molecular design and processing.

Living organisms depend crucially for their growth and development on their ability to assemble molecules into large, ordered three-dimensional structures. The same assembly processes offer an attractive means for designing materials and devices with novel functions, yet scientists have thus far found such processes impossible to reproduce at a macroscopic scale.

To overcome this impasse, the research group used a structure known as a “polymer brush” made up of a polymethacrylate backbone with outstretched side-chains, which together form a cylindrical shape. Azobenzene molecules, known for their propensity to deform when irradiated, were inserted into the side chains, and a free-standing cast film, created from a solution of the polymer brushes, was then tested for photomechanical response.

When no such response was initially detected, the researchers adopted a different approach, sandwiching the polymer brushes between Teflon sheets to first melt them at 130 °C, then “hot-press” them at 115 °C. The hot-pressing process, they discovered, aligned the main chains of the brushes perpendicular to the film plane, while the side chains oriented themselves horizontally along the stretching direction of the Teflon sheets. The resulting 3D molecular ordering enables the film to literally bend and stretch upon alternating irradiation by UV and visible light.

In converting light energy directly into a mechanical force, this remarkable photoresponsive bending motion breaks new ground in the study of functional materials, suggesting applications in the design of muscle-like biomorphic devices. As a technique, the combination of polymer brushes and hot-pressing vastly expands the scale at which such materials can be manufactured, promising to bring advances from the world of molecular processing to the macroscopic level of our daily lives.

For more information, please contact:

Dr. Takuzo Aida
Functional Soft Matter Research Group
RIKEN Advanced Science Institute
Tel: +81-(0)3-5841-7251 / Fax: +81-(0)3-5841-7310
Dr. Takanori Fukushima
Tel: +81-(0)48-462-1111 ext. 6345, 6349, 6338
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp

Journal information
Nobuhiko Hosono, Takashi Kajitani, Takanori Fukushima, Kazuki Ito, Sono Sasaki, Masaki Takata, Takuzo Aida. Large-Area Three-Dimensional Molecular Ordering of a Polymer Brush by One-Step Processing. Science (2010). DOI: 10.1126/science.1195302

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>