Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Pheromone Helps Female Flies Tell Suitors to ‘Buzz Off’

17.07.2009
Using a new form of high-resolution laser mass spectrometry, researchers scanning the surface of fruit flies discovered a previously unidentified pheromone – CH503 – that contributes to the anti-aphrodisiac effects observed in female fruit flies after copulation.
RELEVANCE:
The anti-aphrodisiac effects of copulation have been observed to last for over a week in female Drosophila melanogaster, even though the only previously identified fruit fly pheromone, cVA, stays active on the female for only 24 hours. The identification of the new pheromone, CH503, and the discovery that it remains active on the female for up to 10 days, may help solve this behavioral mystery.
PRINCIPAL INVESTIGATOR
Edward A. Kravitz, George Packer Berry Professor of Neurobiology, Harvard Medical School, http://www.hms.harvard.edu/bss/neuro/kravitz/
JOURNAL
Current Biology
FOR A COPY OF THE PAPER
veronica_meade-kelly@hms.harvard.edu
There she is again: the cute girl at the mall. Big eyes. Long legs. She smiles at you. You’re about to make your move… but wait! What’s she wearing? It’s a letterman jacket, one clearly belonging to a hulking football player named “Steve.” This girl is taken. Wisely, you move on.

Countless teen movies have told the same tale, but behind the fiction is an essential, biological reality: Humans base their behavioral decisions, such as whom to court, on cues gleaned from their environment. The same holds true for all of the animal world, as a paper due to be published this week in Current Biology reminds us. In it, Harvard Medical School (HMS) researchers, along with German colleagues, report on a newly discovered pheromone produced by male fruit flies. They found that the pheromone, which they named CH503 for its molecular mass, acts as the chemical equivalent of the “letterman jacket” when transferred to females during the mating process. CH503 remains on the female’s outer body, warding off male suitors for at least a week. This anti-aphrodisiac effect helps to account for previously noted mating behaviors in fruit flies that have until now gone unexplained.

Researchers discovered this unexpectedly while using a new form of high-resolution laser mass spectrometry to scan distinct regions on the fruit flies’ cuticle, or surface. Joanne Yew, at the time a postdoc in the lab of HMS Neurobiology professor Edward Kravitz, teamed with Klaus Dreisewerd and colleagues at the University of Münster for the study. They used the refined instrumentation, which allowed them to focus an ultraviolet, high-intensity laser on an area as small as 200 micrometers in diameter, to analyze and compare the chemical make-up of each discrete region. The new technology allowed the team to view the flies at high spatial resolution for the first time, and led to the discovery of nearly 30 new compounds not previously detected by traditional methods.

According to Yew, the technology also revealed a difference in the pheromone profiles of the leg and genital regions of the fruit flies. Among the compounds they found almost exclusively in the male genital region was cis-vaccenyl acetate (cVA), which has long been known to work as an anti-aphrodisiac in fruit flies when transferred to females during mating. A second compound -- the hydrocarbon they came to identify as CH503 -- was also discovered in the male genital region. Mass spectrometry revealed that this newly discovered compound was passed on to females during copulation, and remained on the surface of their bodies for at least 10 days after successful mating.

This led the researchers to hypothesize that the new compound might be the missing piece to a longstanding behavioral puzzle: The anti-aphrodisiac effects of copulation have been observed to last for over a week in fruit flies, even though cVA only stays active on the female for 24 hours. To test their theory, Yew’s team “perfumed virgin females with [CH503] and found that having this compound on the female’s surface inhibited courtship in males.”

Dr. Kravitz said of the findings, “Everyone already knew from behavioral experiments that the anti-aphrodisiac effects on female fruit flies can last up to a week, so it may be that this compound, CH503, explains why you have anti-aphrodisiac effects that last much longer. It also makes clear that cVA is only part of the story.”

The researchers hypothesize that their method might one day be used to identify pheromones from health-related insects such as mosquitoes, with possible implications for population control.

The paper is due to be published online July 16 in Current Biology.

This research is funded by a Human Frontier Science Program short-term fellowship; a National Institute of Mental Health National Research Service Award; and research grants from the National Institute of General Sciences, the National Science Foundation, and the Deutsche Forschungsgemeinschaft.

Written by Veronica Meade-Kelly

FULL CITATION

Current Biology, online July 16, scheduled to appear in the Aug. 11 print edition

"A new male sex-pheromone and novel cuticular cues for chemical communication in Drosophila"

Joanne Y. Yew (1*), Klaus Dreisewerd (2*), Heinrich Luftmann (3), Johannes Muething (4), Gottfried Pohlentz (2), and Edward A. Kravitz (1)

(1) Department of Neurobiology, Harvard Medical School, Boston, MA
(2) Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
(3) Institute of Organic Chemicstry, University of Muenster, Muenster, Germany
(4) Institute of Hygiene, University of Muenster, Muenster, Germany
*These authors contributed equally to this work
Harvard Medical School http://hms.harvard.edu has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 17 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Children's Hospital Boston, Dana-Farber Cancer Institute, Forsyth Institute, Harvard Pilgrim Health Care, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, and VA Boston Healthcare System.

Veronica Meade-Kelly | Newswise Science News
Further information:
http://hms.harvard.edu

More articles from Life Sciences:

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>