Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible pharmacological target(s) identified in pediatric OSA

04.02.2010
Children with obstructive sleep apnea (OSA) may one day be able to have an injection or use a throat spray instead of getting their tonsils removed to cure their snoring, according to a new study from the University of Chicago, which found that a specific gene product may be responsible for the proliferation of adenotonsillar tissue that can cause pediatric OSA.

"We found that in the tonsil tissues of children with OSA, certain genes and gene networks were over expressed," said David Gozal, M.D., professor and chair of the Department of Pediatrics, who led the study.

"We believe that the results of this gene overexpression is increased proliferation of the adenotonsillar tissues, which in turn can cause partial or complete obstruction of the upper airways during sleep."

The findings have been published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

In the United States, two to three percent of children have OSA. The current standard of treatment is surgical removal on the tonsils, but surgery is not without risks and potential complications. Currently, about 600,000 tonsillectomies are performed each year in children, primarily to treat OSA.

Dr. Gozal and colleagues have been studying potential non-surgical alternatives to treat OSA in children. To identify potential pharmacological targets, they recruited 18 children with OSA and 18 age-, gender-, and ethnicity-matched children with recurrent tonsillar infections (RI), all of who underwent surgery to have their tonsils removed.

The tonsil tissue from each subject was analyzed for relative expression of the 44,000 known genes in the human genome. The researchers then further analyzed the gene pathways to determine which changes may represent differences with a high likelihood of impact on cellular proliferation.

"We wanted to find the most important and functionally pertinent genes, those with the most connectivity," explained Dr. Gozal. "We identified 47 genes and among those, two specific genes, both phosphatases, which are known to be very important at regulating communication in cells. Then we looked at the expression of the phosphatase protein and found that children with OSA have higher level of phosphatases in the tonsils." In particular, they focused on one protein called phosphoserine phosphatase (PSPH) that was expressed in children with OSA, but almost never expressed in the children with RI.

"We asked, 'What happens if we block this phosphatase?'" said Dr. Gozal. "Is this a potential target for pharmacological therapy?" Indeed, they found that introducing calyculin, a phosphatase inhibitor, reduced the cell proliferation and increased programmed cell death, or apoptosis, a process by which cells self-regulate, in the tonsils of OSA patients. "Together, these observations suggest that PSPH is a logical therapeutic target in reversing adenotonsillar enlargement in pediatric OSA," Dr. Gozal wrote.

"The next direction is to identify if selective clones of proliferating cells that may be affected by PSPH or by another of the discovered target genes with the intent of developing a non-surgical alternative treatment to surgery for OSA in children," said Dr. Gozal. "If there is a subgroup of cells that have specific markers, then we may be able to develop a therapy that could be specifically targeted to these cells."

"Phosphatases such as PSPH are an exciting prospective target for therapy in children with OSA," said Dr. Gozal. "We believe if we had effective non-surgical alternatives to tonsillectomies, it would be of great benefit."

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>