Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phages transducing antibiotic resistance detected in chicken meat

21.05.2015

Bacteria resistant to antibiotics are on the rise. There are different explanations for how these resistances are transferred. Researchers from the Vetmeduni Vienna found phages in chicken meat that are able to transfer antimicrobial resistance to bacteria. Phages are viruses that exclusively infect bacteria and are therefore harmless to humans. However, phages can contribute to the spread of antimicrobial resistance. These findings are not only relevant for the food industry but also for medicine. The study was published in the journal Applied and Environmental Microbiology.

Antimicrobial resistance in bacteria poses a global threat to public health. Common antibiotics are often ineffective in treating infectious diseases because pathogens acquire resistance genes. These antimicrobial resistance genes are obtained in different ways.


Elektron microscopic picture of a bacteriaphage.

Photo: Szostak/Dinhopl/Vetmeduni Vienna

„The most frequent way is the transfer via mobile genetic elements such as plasmids, or via transposons, the so-called jumping genes,” explains Friederike Hilbert, scientist at the Institute of Meat Hygiene at the Vetmeduni Vienna. “Transfer of resistances via phages was thought to play a minor role so far.”

Hilbert and her colleagues isolated phages from 50 chicken samples purchased from Austrian supermarkets, street markets and butchers. They found phages in 49 samples. “Phages do not pose a risk to humans because they can only infect bacteria. No other cells or organisms can be infected.”

Their analysis showed that one quarter of the phages under study were able to transduce antimicrobial resistance to E. coli bacteria under laboratory conditions. They transduced resistance to kanamycin, tetracycline, ampicillin, and chloramphenicol. No phage was able to transduce resistance to an extended-spectrum beta-lactam resistance (ESBL).

“This mechanism could also be important in clinical settings, where multiresistant pathogens are on the rise. We assume that phages acquire resistance genes from already resistant bacteria and then transfer those genes to other bacteria,” says Hilbert.
“Our results could explain why resistances spread so rapidly among bacteria.”

Catalysts for evolution

Scientists have known for a while that phages are able to transduce genes but this was considered a rare event for genes encoding resistance to antibiotics. Newer DNA analyses show, however, that phages leave their signature in bacterial genomes. This way of transfer is presumably more frequent than thought. Phages may therefore play a major role in bacterial evolution.

Phages are more robust than bacteria

Compared to bacteria, phages are significantly more resistant to disinfectants. Alcohol, in particular, is hardly active against phages. “Common disinfection methods are often inappropriate against phages,” Hilbert underlines. The food industry and also hospitals may choose disinfectants that are active against bacteria, but might be ineffective against phages.

Focussing on phage therapy

Treating bacterial infections with phages has become a promising alternative combating antimicrobial-resistant pathogens where phages directly combat bacteria. Hilbert recommends to test therapeutic phages for their ability to transfer resistance genes. The combination of phages and multiresistant pathogens could otherwise result in a hazardous cocktail of phages transferring multiresistance genes.”

Service:
Der Artikel „Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes” von Amira Shousha, Nattakarn Awaiwanont, Dmitrij Sofka, Frans J.M. Smulders, Peter Paulsen, Michael P. Szostak, Tom Humphrey und Friederike Hilbert wurde in Applied and Environmental Microbiology veröffentlicht. doi: 10.1128/AEM.00872-15
http://aem.asm.org/content/early/2015/04/27/AEM.00872-15.long

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Ao.Univ.-Prof. Friederike Hilbert
Institut of Meat Hygiene
University of Veterinary Medicine, Vienna (Vetmeduni Vienna)
T +43 1 20577-3316
friederike.hilbert@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>