Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The petunia points the way to better harvests

08.03.2012
Most plants live in symbiosis with soil fungi and are supplied with water and nutrients as a result.
Based on the petunia, plant biologists at the University of Zurich have now discovered that a special transport protein is required to establish this symbiotic relationship. The targeted control of this protein could lead to greater harvests.

About 80 percent of all terrestrial plants enter into a symbiotic relationship with fungi living in the soil. The fungi provide the plant with water, important nutrients like phosphate and nitrate, and certain trace elements like zinc; the plant, on the other hand, supplies the fungus with carbohydrates. It is assumed that plants were only able to migrate onto land 400 million years ago thanks to this symbiosis.

The formation of this symbiosis is a strictly regulated process that the plant activates in low nutrient levels. The roots release the hormone strigolactone, which is detected by the fungi. The fungal hyphae grow towards the roots, penetrate the epidermis and isolated passage cells, and enter the root cortex. There, the fungal hyphae form tiny branch-like networks, which resemble little trees (arbusculum) and gave the symbiotic relationship its name: vesicular-arbuscular mycorrhizal symbiosis.

Until about five years ago, the hormone strigolactone was known to induce and entice parasitic plant seeds in the soil to germinate. At that stage, no-one understood why plants produced this substance, which is harmful to them. Only when the new role of strigolactone in mycorrhiza formation was discovered did it become clear that the attraction of the parasites was a harmful side effect of the symbiosis.

How do strigolactones get into the soil?

Exactly how strigolactones are released into the soil from the roots and how the fungi find the specialized entry points in the roots was not known until now. The research group headed by Professor Enrico Martinoia from the University of Zurich has now found the answers to these questions in collaboration with Professor Harro Bouwmeester’s team from Wageningen in the Netherlands. “Based on the model plant the petunia, we were able to demonstrate that the protein PhPDR1 transports strigolactones,” explains Professor Martinoia. The protein belongs to the ABC-transporter family found in simple organisms like bacteria, but also in humans.

The researchers observed that PhPDR1 is expressed more highly in a low nutrient content in order to attract more symbiotic fungi, which then supply more nutrients. But there are also plants like the model plant Arabidopsis (mouse-ear cress) that do not form any mycorrhiza. If the researchers added PhPDR1, however, the Arabidopsis roots transported strigolactones again.

Improvements in yield and weed control

“Our results will help to improve the mycorrhization of plants in low-nutrient soils,” Professor Martinoia is convinced. “Mycorrhization can thus be triggered where it is inhibited due to dryness or flooding of the soils.” This would enable the plants to be nourished more effectively and achieve a greater harvest. Moreover, thanks to the discovery of the strigolactone transporter the secretion of strigolactone into the soil can be halted, which prevents parasitic plants that use up the host plants’ resources from being attracted. “This is especially important for regions in Africa, where the parasitic weed Striga and other parasitic plants regularly destroy over 60 percent of harvests,” says Martinoia.
Further reading:
Tobias Kretzschmar, Wouter Kohlen, Joelle Sasse, Lorenzo Borghi, Markus Schlegel, Julien B. Bachelier, Didier Reinhardt, Ralph Bours, Harro J. Bouwmeester and Enrico Martinoia. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, doi:10.1038/nature10873.
Contact:
Professor Enrico Martinoia
Institute of Plant Biology
University of Zurich
Tel.: +41 44 634 82 22
Email: enrico.martinoia@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>