Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Petascale Tools Could Provide Deeper Insight into Genomic Evolution

18.11.2009
Technological advances in high-throughput DNA sequencing have opened up the possibility of determining how living things are related by analyzing the ways in which their genes have been rearranged on chromosomes. However, inferring such evolutionary relationships from rearrangement events is computationally intensive on even the most advanced computing systems available today.

Research recently funded by the American Recovery and Reinvestment Act of 2009 aims to develop computational tools that will utilize next-generation petascale computers to understand genomic evolution. The four-year $1 million project, supported by the National Science Foundation’s PetaApps program, was awarded to a team of universities that includes the Georgia Institute of Technology, the University of South Carolina and The Pennsylvania State University.

“Genome sequences are now available for many organisms, but making biological sense of the genomic data requires high-performance computing methods and an evolutionary perspective, whether you are trying to understand how genes of new functions arise, why genes are organized as they are in chromosomes, or why these arrangements are subject to change,” said lead investigator David A. Bader, a professor in the Computational Science and Engineering Division of Georgia Tech’s College of Computing.

Even on today’s fastest parallel computers, it could take centuries to analyze genome rearrangements for large, complex organisms. That is why the research team -- which also includes Jijun Tang, an associate professor in the Department of Computer Science and Engineering at the University of South Carolina; and Stephen Schaeffer, an associate professor of biology at Penn State -- is focusing on future generations of petascale machines, which will be able to process more than a thousand trillion, or 10^15, calculations per second. Today, most personal computers can only process a few hundred thousand calculations per second.

The researchers plan to develop new algorithms in an open-source software framework that will utilize the capabilities of parallel, petascale computing platforms to infer ancestral rearrangement events. The starting point for developing these new algorithms will be GRAPPA, an open-source code co-developed by Bader and initially released in 2000 that reconstructed the evolutionary relatedness among species.

“GRAPPA is currently the most accurate method for determining genome rearrangement, but it has only been applied to small genomes with simple events because of the limitation of the algorithms and the lack of computational power,” explained Bader, who is also executive director of high-performance computing at Georgia Tech.

On a dataset of a dozen bellflower genomes, the latest version of GRAPPA determined the flowers’ evolutionary relatedness one billion times faster than the original implementation that did not utilize parallel processing or optimization.

The researchers will test the performance of their new algorithms by analyzing a collection of fruit fly genomes.

“Fruit flies -- formally known as Drosophila -- are an excellent model system for studying genome rearrangement because the genome sizes are relatively small for animals, the mechanism that alters gene order is reasonably well understood, and the evolutionary relationships among the 12 sequenced genomes are known,” said Schaeffer.

The analysis of genome rearrangements in Drosophila will provide a relatively simple system to understand the mechanisms that underlie gene order diversity, which can later be extended to more complex mammalian genomes, such as primates.

The researchers believe these new algorithms will make genome rearrangement analysis more reliable and efficient, while potentially revealing new evolutionary patterns. In addition, the algorithms will enable a better understanding of the mechanisms and rate of gene rearrangements in genomes, and the importance of the rearrangements in shaping the organization of genes within the genome.

“Ultimately this information can be used to identify microorganisms, develop better vaccines, and help researchers better understand the dynamics of microbial communities and biochemical pathways,” added Bader.

This material is based upon work supported by the National Science Foundation (NSF) under Award Nos. OCI-0904461, 0904179 and 0904166. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the researchers and do not necessarily reflect the views of the NSF.

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>