Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Self-perpetuating signals may drive tumor cells to spread

A team of international researchers from Duke-NUS Graduate Medical School Singapore and the Johns Hopkins University School of Medicine (USA) has identified a self-perpetuating signaling circuit inside connective tissue cells that allows these cells to form a front and a back and propel themselves in a particular direction over a long period of time.

This propulsion is the same movement that tumor cells use to invade healthy tissue during cancer metastasis so cracking the code to this signaling network may lead to new therapeutic strategies against cancer and other devastating diseases.

Many different types of cells in our body can crawl and migrate to distinct locations, sometimes over long distances. Immune system cells, for example, move to a wound site to kill microorganisms during an infection, and connective tissue cells (fibroblasts) move there to repair damaged areas. Cell migration is essential to a variety of biological processes, such as the development of an organism, wound healing, and immune surveillance, but also the invasion of tumor cells during cancer metastasis.

Cell migration is an extraordinarily complex process which depends on the ability of a cell to form a front and a back (called polarization) and generate force in one preferred direction. Migrating cells are able to do this spontaneously, without assistance from the environment. How they do this is a question that has kept cell biologists busy for the last three decades.

These latest results shed light on the migratory mechanism of cells. In particular, the team found that the signaling network involved has an interesting property, well known to engineers and bankers: it is self-perpetuating. A classic analogy to this type of circuit is a bank run, which occurs when a large number of customers withdraw their money from a bank due to concerns about the bank's solvency. As more people withdraw their funds, the probability of default increases, prompting more people to withdraw their money, in a kind of self-fulfilling prophecy (or positive feedback loop).

The team went on to show that this positive feedback circuit is switched on in very specific regions in the connective tissue cells, causing proteins to push against only one side of the outer envelope of the cell, eventually causing movement in one preferred direction. Predictably, two important protein components of this signaling circuit, called Ras and PI3K, are often mutated in cancer. This suggests that misregulation of this circuit may increase the invasiveness of cancer cells. It also highlights the need to understand how signaling proteins interact with each other inside cells, hopefully leading one day to new therapies for cancer and other deadly diseases.

This study, entitled "The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts" was published online in Molecular Biology of the Cell on May 15. It is supported by a grant from the Ministry of Education.

Catherine Kolf | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>