Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-perpetuating signals may drive tumor cells to spread

17.07.2013
A team of international researchers from Duke-NUS Graduate Medical School Singapore and the Johns Hopkins University School of Medicine (USA) has identified a self-perpetuating signaling circuit inside connective tissue cells that allows these cells to form a front and a back and propel themselves in a particular direction over a long period of time.

This propulsion is the same movement that tumor cells use to invade healthy tissue during cancer metastasis so cracking the code to this signaling network may lead to new therapeutic strategies against cancer and other devastating diseases.

Many different types of cells in our body can crawl and migrate to distinct locations, sometimes over long distances. Immune system cells, for example, move to a wound site to kill microorganisms during an infection, and connective tissue cells (fibroblasts) move there to repair damaged areas. Cell migration is essential to a variety of biological processes, such as the development of an organism, wound healing, and immune surveillance, but also the invasion of tumor cells during cancer metastasis.

Cell migration is an extraordinarily complex process which depends on the ability of a cell to form a front and a back (called polarization) and generate force in one preferred direction. Migrating cells are able to do this spontaneously, without assistance from the environment. How they do this is a question that has kept cell biologists busy for the last three decades.

These latest results shed light on the migratory mechanism of cells. In particular, the team found that the signaling network involved has an interesting property, well known to engineers and bankers: it is self-perpetuating. A classic analogy to this type of circuit is a bank run, which occurs when a large number of customers withdraw their money from a bank due to concerns about the bank's solvency. As more people withdraw their funds, the probability of default increases, prompting more people to withdraw their money, in a kind of self-fulfilling prophecy (or positive feedback loop).

The team went on to show that this positive feedback circuit is switched on in very specific regions in the connective tissue cells, causing proteins to push against only one side of the outer envelope of the cell, eventually causing movement in one preferred direction. Predictably, two important protein components of this signaling circuit, called Ras and PI3K, are often mutated in cancer. This suggests that misregulation of this circuit may increase the invasiveness of cancer cells. It also highlights the need to understand how signaling proteins interact with each other inside cells, hopefully leading one day to new therapies for cancer and other deadly diseases.

This study, entitled "The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts" was published online in Molecular Biology of the Cell on May 15. It is supported by a grant from the Ministry of Education.

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>