Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peripheral Induction of Alzheimer-Like Brain Pathology in Mice

22.10.2010
Pathological protein deposits linked to Alzheimer's disease and cerebral amyloid angiopathy can be triggered not only by the administration of pathogenic misfolded protein fragments directly into the brain but also by peripheral administration outside the brain.

This is shown in a new study done by researchers at the Hertie Institute of Clinical Brain Research (HIH, University Hospital Tübingen, University of Tübingen) and the German Center for Neurodegenerative Diseases (DZNE), published in Science on October 21, 2010.

Alzheimer’s disease and a brain vascular disorder called cerebral beta-amyloid angiopathy are characterized by the accumulation of a protein fragment known as Abeta. In Alzheimer´s disease, misfolded Abeta is deposited mainly in so-called amyloid plaques, whereas in cerebral beta-amyloid angiopathy, the Abeta protein aggregates in the walls of blood vessels, interfering with their function and, in some cases, causing them to rupture with subsequent intracerebral bleeding.

In 2006, scientists in Tübingen, led by Mathias Jucker, reported that injection of dilute extracts from Alzheimer's disease brain tissue, or from Abeta-laden mouse brain tissue, into the brains of transgenic mice (genetically modified to produce the human form of Abeta) stimulated Abeta aggregation within the mouse brain (Science 313: 1781-4, 2006).

In the current Science study, Professor Jucker and first author Yvonne Eisele, together with their research team (HIH, University of Tübingen, DZNE) and colleagues Matthias Staufenbiel (Novartis), Mathias Heikenwälder (University of Zürich), and Lary Walker (Emory University Atlanta) report that Abeta deposition can be induced in the transgenic mouse brain by the intraperitoneal administration of mouse brain extract containing misfolded Abeta. This induced Abeta deposition was primarily associated with the vasculature, but was also evident as amyloid plaques between nerve cells. The time needed to induce amyloid deposition in the brain was much longer for peripheral as compared to direct brain administration. In both cases, the induced amyloid deposition also triggered several neurodegenerative and neuroinflammatory changes commonly observed in the brains of patients with Alzheimer´s disease and cerebral beta-amyloid angiopathy. “The finding that mechanisms exist allowing for the transport of Abeta aggregates from the periphery to the brain raises the question of whether protein aggregation and propagation, which may also be involved in other neurodegenerative brain diseases, can be induced by agents originating in the periphery“, points out Professor Jucker. The present findings provide new clues on pathogenetic mechanisms underlying Alzheimer’s disease; further investigation will likely lead to new strategies for prevention and treatment.

While this molecular principle of induced protein aggregation bears similarities to that of prion diseases, the latter, which include bovine spongiform encephalopathy (BSE), can also be initiated by introducing prions at sites peripheral to the brain. The present study shows that this is not a characteristic unique to prion diseases, as has been assumed so far. Despite this remarkable observation and the apparent mechanistic similarities between Alzheimer´s and prion diseases, there is no evidence that Alzheimer's disease or cerebral amyloid angiopathy is transmitted between mammals or humans in the same manner as prion diseases.

Title of the original publication: Peripherally Applied Ab-Containing Inoculates Induce Cerebral b-Amyloidosis
Authors: Yvonne S. Eisele1,2, Ulrike Obermüller1,2, Götz Heilbronner1,2,3, Frank Baumann1,2, Stephan A. Kaeser1,2, Hartwig Wolburg4, Lary C. Walker5, Matthias Staufenbiel6, Mathias Heikenwalder7, Mathias Jucker1,2,*

1Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; 2DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany; 3Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany; 4Department of Pathology, University of Tübingen, Tübingen, Germany; 5Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA, USA, 6Novartis Institutes for Biomedical Research, Neuroscience Discovery, Basel, Switzerland; 7Department of Pathology, Institute for Neuropathology, University Hospital, Zürich, Switzerland.

Advanced online publication in Science, Science express Website 21 October 2010 (2:00 pm U.S. Eastern Time) www.scienceexpress.org

Contact:
Professor Dr. Mathias Jucker
University of Tübingen
University Hospital Tübingen, Center for Neurology
Hertie Institute for Clinical Brain Research (HIH)
DZNE-Site Tübingen
Phone: +49 (0)7071/29-86863
E-Mail: mathias.jucker@uni-tuebingen.de
Hertie Institute for Clinical Brain Research (HIH)
Press Officer
Kirstin Ahrens
Phone: +49 (0)7073-500 724, Mobil: 0173 – 300 53 96
E-Mail : mail@kirstin-ahrens.de
University of Tübingen
Communication
Michael Seifert
Phone: +49 (0)7071-2976789
E-Mail: michael.seifert@uni-tuebingen.de
University Hospital Tübingen
Press officer
Dr. Ellen Katz
Phone: +49 (0)7071-2980112
E-Mail: ellen.katz@med.uni-tuebingen.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de
http://www.medizin.uni-tuebingen.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>