Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New period of brain “plasticity” created with transplanted embryonic cells

26.03.2010
UCSF scientists report that they were able to prompt a new period of “plasticity,” or capacity for change, in the neural circuitry of the visual cortex of juvenile mice. The approach, they say, might some day be used to create new periods of plasticity in the human brain that would allow for the repair of neural circuits following injury or disease.

The strategy – which involved transplanting a specific type of immature neuron from embryonic mice into the visual cortex of young mice – could be used to treat neural circuits disrupted in abnormal fetal or postnatal development, stroke, traumatic brain injury, psychiatric illness and aging.

Like all regions of the brain, the visual cortex undergoes a highly plastic period during early life. Cells respond strongly to visual signals, which they relay in a rapid, directed way from one appropriate cell to the next in a process known as synaptic transmission. The chemical connections created in this process produce neural circuitry that is crucial for the function of the visual system. In mice, this critical period of plasticity occurs around the end of the fourth week of life.

The catalyst for the so-called critical period plasticity in the visual cortex is the development of synaptic signaling by neurons that release the inhibitory neurotransmitter GABA. These neurons receive excitatory signals from other neurons, thus helping to maintain the balance of excitation and inhibition in the visual system.

In their study, published in the journal Science, (Vol. 327. no. 5969, 2010), the scientists wanted to see if the embryonic neurons, once they had matured into GABA-producing inhibitory neurons, could induce plasticity in mice after the normal critical period had closed.

The team first dissected the immature neurons from their origin in the embryonic medial ganglionic eminence (MGE) of the embryonic mice. Then they transplanted the MGE cells into the animals’ visual cortex at two different juvenile stages. The cells, targeted to the visual cortex, dispersed through the region, matured into GABAergic inhibitory neurons, and made widespread synaptic connections with excitatory neurons.

The scientists then carried out a process known as monocular visual deprivation, in which they blocked the visual signals to one eye in each of the animals for four days. When this process is carried out during the critical period, cells in the visual cortex quickly become less responsive to the eye deprived of sensory input, and become more responsive to the non-deprived eye, creating alterations in the neural circuitry. This phenomenon, known as ocular dominance plasticity, greatly diminishes as the brain matures past this critical postnatal developmental period.

The team wanted to see if the transplanted cells would affect the visual system’s response to the visual deprivation after the critical period. They studied the cells’ effects after allowing them to mature for varying lengths of time. When the cells were as young as 17 days old or as old as 43 days old, they had little impact on the neural circuitry of the region. However, when they were 33-39 days old, their impact was significant. During that time, monocular visual deprivation shifted the neural responses away from the deprived eye and toward the non-deprived eye, revealing the state of ocular dominance plasticity.

Naturally occurring, or endogenous, inhibitory neurons are also around 33-39 days old when the normal critical period for plasticity occurs. Thus, the transplanted cells’ impact occurred once they had reached the cellular age of inhibitory neurons during the normal critical period.

The finding, the team says, suggests that the normal critical period of plasticity in the visual cortex is regulated by a developmental program intrinsic to inhibitory neurons, and that embryonic inhibitory neuron precursors can retain and execute this program when transplanted into the postnatal cortex, thereby creating a new period of plasticity.

“The findings suggest it ultimately might be possible to use inhibitory neuron transplantation, or some factor that is produced by inhibitory neurons, to create a new period of plasticity of limited duration for repairing damaged brains,” says author Sunil P. Gandhi, PhD, a postdoctoral fellow in the lab of Michael Stryker, PhD, professor of physiology and a member of the Keck Center for Integrative Neurosciences at UCSF. “It will be important to determine whether transplantation is equally effective in older animals.”

Likewise, “the results raise a fundamental question: how do these cells, as they pass through a specific stage in their development, create these windows of plasticity?” says author Derek G. Southwell, PhD, a student in the lab of Arturo Alvarez-Buylla, PhD, Heather and Melanie Muss Professor of Neurological Surgery and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.

The findings could be relevant to understanding why learning certain behaviors, such as language, occurs with ease in young children but not in adults, says Alvarez-Buylla. “Grafted MGE cells may some day provide a way to induce cortical plasticity and learning later in life.”

The findings also complement two other recent UCSF studies using MGE cells to modify neural circuits. In a collaborative study among the laboratories of Scott Baraban, PhD, professor of neurological surgery; John Rubenstein, MD, PhD, professor of psychiatry, and Alvarez-Buylla, the cells were grafted into the neocortex of juvenile rodents, where they reduced the intensity and frequency of epileptic seizures. (Proceedings of the National Academy of Science, vol. 106, no. 36, 2009). Other teams are exploring this tactic, as well.

In the other study (Cell Stem Cell, vol. 6, issue 3, 2010), UCSF scientists reported the first use of MGEs to treat motor symptoms in mice with a condition designed to mimick Parkinson’s disease. The finding was reported by the lab of Arnold Kriegstein, MD, PhD, UCSF professor of neurology and director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, in collaboration with Alvarez-Buylla and Krys Bankiewicz, MD, PhD, UCSF professor of neurological surgery.

The other co-author of the plasticity study was Robert C. Froemke, PhD, a postdoctoral fellow in the lab of Christoph Schreiner, MD, PhD, professor and vice chair of otolaryngology.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>