Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect Ribbons

07.02.2011
Long and narrow, free of defects, and soluble: graphene nanoribbons by bottom-up synthesis

Electronic components based on graphene could render our current silicon-based electronics obsolete. Graphene, a more recently discovered form of carbon, consists of two-dimensional sheets of aromatic six-membered carbon rings in a honeycomb arrangement.

In contrast to extended graphene layers, narrow graphene nanoribbons have semiconducting properties and could thus be candidates for electronic applications. Klaus Müllen and a team from the Max Planck Institute for Polymer Research in Mainz have now introduced a new method for the synthesis of long, narrow graphene ribbons with defined dimensions in the journal Angewandte Chemie.

Previously, graphene ribbons were mainly cut out of larger graphene sheets or were obtained by slitting open carbon nanotubes lengthwise. However, with these methods it is impossible to produce ribbons that have a precisely established ratio of width to length as well as defined edges. These details are important because they determine the electronic properties of the ribbons. The search has thus been on for a method that allows controlled production of very narrow graphene ribbons—an extremely difficult challenge. The German researchers working with Müllen are now well on the way to overcome it. They are not starting with large structures to cut up (top-down); instead they are building their ribbons from smaller components (bottom-up).

The building blocks selected by Müllen and his team are long chains of aromatic six-membered carbon rings called polyphenlyenes. In contrast to previous approaches, they did not produce straight chains; instead they made them with a flexible, zigzagging, bent backbone. Furthermore, they attached hydrocarbon side-chains to the backbone to increase the solubility in organic solvents, which allows the compounds to be synthesized and processed in solution.

The next step is a reaction that splits off hydrogen (dehydrogenation). This causes a ring-closing reaction in each pointy tip of the zigzag, forming a new aromatic six-membered carbon ring that shares a side with three neighboring rings—the chain transforms in to a narrow ribbon.

In this way, the team was able to produce a series of different nanoribbons with lengths reaching over 40 nm. The width of the ribbon was defined by the size of the “points” of the polyphenylene precursor. The resulting ribbons are free of defects and soluble in common organic solvents.

“We have been the first to demonstrate that structural perfection can be achieved by the classical bottom-up synthesis of defined graphene nanoribbons,” says Müllen. “The solubility of the ribbons is an important requirement for the large-scale production of electronic components.”

Author: Klaus Müllen, Max-Planck-Institut für Polymerforschung, Mainz (Germany), http://www.mpip-mainz.mpg.de/groups/muellen/director

Title: Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201006593

Klaus Müllen | Angewandte Chemie
Further information:
http://www.mpip-mainz.mpg.de/groups/muellen/director
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie Ribbons building block graphene graphene nanoribbon

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>