Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect imperfection

03.05.2016

One thing is obvious: moth's eyes and snake's skin are entirely different. Researchers at Kiel University have taken a closer look, however, and have now brought the supposed 'apples and oranges' to a common denominator. They have opened up a completely new, comparative view of biological surfaces using a newly developed method, and have thus come closer to the solution of how these surfaces work. Dr. Alexander Kovalev, Dr. Alexander Filippov and Professor Stanislav Gorb from the Zoological Institute at Kiel University have published their findings in the current edition of the scientific journal "Applied Physics A“.

One surface demonstrates reduced light reflection, the other is water repellent and resistant to abrasion. Surfaces in the animal world are evolved to adapt to their environments and give the animal they cover the greatest possible evolutionary advantage. Scientists are today still puzzled by exactly how and why these different structures develop in detail.


Scanning electronmicroscopy image of a single ommatidium surface of an eye in the moth Manduca sexta.

Credit: research group Gorb


Scanning electron microscopy image of the tail ventral scale in the snake Morelia viridis. The black shadowed gray circle marks a typical hexagonal arrangement of dimples, whereas both white and black circles mark five- and sevenfold symmetrical arrangement of dimples, respectively.

Credit: research group Gorb

Current research looks right into the surface nano-structures using the latest research techniques. Normally, we would limit ourselves to comparisons within closely related species and just look thoroughly at small areas of the surface, says Gorb: “That is why we asked ourselves which structural differences can be found between completely different species. To do so, we changed biology's typical perspective and addressed larger surface areas from various species.” These types of cross-species or cross-material studies of nanostructures are common in other technical or inorganic fields. In Biology, however, this method is completely new, Gorb continues.

They got the idea from the decorations in the hallway of their own institute, where scanning electron microscope images of moth's eyes and snake's skin are displayed. At some point, theoretical physicist Filippov noticed similarities between the images, which showed the surfaces at a resolution of a few millionths of a millimetre. Nipples and dimples could be seen which seemed to the human eye to follow a certain pattern. Using methods that are normally used in crystallography, the scientists were finally able to recognise the particular patterns that distinguish the two species. “The structure of moth's eyes is perfectly organised. Nipples are highly ordered, and preferred directions are exhibited in the structural organisation”, explains Kovalev, biophysicist and main author of the study. The scientists were already aware of the eye structure's strict symmetry. However, the fact that this goes right through to the nano-level and is repeated across the entire surface in so-called domains, is an important new finding.

So which symmetry does snake's skin have, which at first glance appears similar, perhaps even more perfectly organised? “Compared to the structure of the moth's eye, the structure of the snake's skin is unorganised”, explains Kovalev. He continued: “If we concentrate on one dimple in the skin, like one nipple in the eye, we only see a diffuse cloud of further dimples in the close surroundings. Neither particular directions nor the regular arrangement can be defined. This unorganised structure continues across the entire surface.”

On their own, these findings about the organised eye structure on the one hand and the unorganised skin structure on the other hand are not especially significant. But by taking the common denominator, i.e. investigating both structures with the same degree of resolution, it is possible for the first time to compare fundamentally different structures, explains Gorb: “However, the ‘coincidental’ degree of organisation is not coincidental, but a result of evolution. That would mean that the perfect organisation gives the moth its incredible night vision, while the imperfect organisation in snake's skin ensures the best friction properties.” That sounds logical, when you consider the laws of physics, that a symmetrical structure is necessary for good vision and good friction properties require the surface ordering in the contact with the ground to be as low as possible.

If the Kiel-based researchers had followed the usual approaches and compared snakes to snakes and moths to moths, the organisation of the elements at nano-level would have hardly been considered significant. “By comparing evolutionary distant species, we now see that the key to understanding surface functions must be right at the smallest level. Every biological surface is adapted to its environment, and these adaptations are reflected in the organisation of their smallest elements in a certain perfect or imperfect degree”, Gorb concludes.

Original publication
A. Kovalev, A. Filippov, S.N. Gorb. "Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis”; Applied Physics A 122:253
DOI: 10.1007/s00339-016-9795-2

Photos are available for download under:
http://www.uni-kiel.de/download/pm/2016/2016-096-1.jpg
Looking straight in the eye. Kiel’s scientists explore the nanostructure of animal cells. Photo, Copyright: Eulitz/Gorb

http://www.uni-kiel.de/download/pm/2016/2016-096-2.jpg
They got their research idea from the hallway of their own institute: Stanislav Gorb (left) and Alexander Kovalev (right).
Credit: Claudia Eulitz/CAU

http://www.uni-kiel.de/download/pm/2016/2016-096-3.jpg
Scanning electron microscopy image of the tail ventral scale in the snake Morelia viridis. The black shadowed gray circle marks a typical hexagonal arrangement of dimples, whereas both white and black circles mark five- and sevenfold symmetrical arrangement of dimples, respectively.
Credit: research group Gorb

http://www.uni-kiel.de/download/pm/2016/2016-096-4.jpg
Scanning electronmicroscopy image of a single ommatidium surface of an eye in the moth Manduca sexta.
Credit: research group Gorb

Contact
Prof. Dr. Stanislav N. Gorb
Zoological Institute at Kiel University
Tel. +49-431/880-4513
sgorb@zoologie.uni-kiel.de
http://www.uni-kiel.de/zoologie/gorb/topics.html

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Claudia Eulitz
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni


Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-137-motten-und-schlan...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>