Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect imperfection

03.05.2016

One thing is obvious: moth's eyes and snake's skin are entirely different. Researchers at Kiel University have taken a closer look, however, and have now brought the supposed 'apples and oranges' to a common denominator. They have opened up a completely new, comparative view of biological surfaces using a newly developed method, and have thus come closer to the solution of how these surfaces work. Dr. Alexander Kovalev, Dr. Alexander Filippov and Professor Stanislav Gorb from the Zoological Institute at Kiel University have published their findings in the current edition of the scientific journal "Applied Physics A“.

One surface demonstrates reduced light reflection, the other is water repellent and resistant to abrasion. Surfaces in the animal world are evolved to adapt to their environments and give the animal they cover the greatest possible evolutionary advantage. Scientists are today still puzzled by exactly how and why these different structures develop in detail.


Scanning electronmicroscopy image of a single ommatidium surface of an eye in the moth Manduca sexta.

Credit: research group Gorb


Scanning electron microscopy image of the tail ventral scale in the snake Morelia viridis. The black shadowed gray circle marks a typical hexagonal arrangement of dimples, whereas both white and black circles mark five- and sevenfold symmetrical arrangement of dimples, respectively.

Credit: research group Gorb

Current research looks right into the surface nano-structures using the latest research techniques. Normally, we would limit ourselves to comparisons within closely related species and just look thoroughly at small areas of the surface, says Gorb: “That is why we asked ourselves which structural differences can be found between completely different species. To do so, we changed biology's typical perspective and addressed larger surface areas from various species.” These types of cross-species or cross-material studies of nanostructures are common in other technical or inorganic fields. In Biology, however, this method is completely new, Gorb continues.

They got the idea from the decorations in the hallway of their own institute, where scanning electron microscope images of moth's eyes and snake's skin are displayed. At some point, theoretical physicist Filippov noticed similarities between the images, which showed the surfaces at a resolution of a few millionths of a millimetre. Nipples and dimples could be seen which seemed to the human eye to follow a certain pattern. Using methods that are normally used in crystallography, the scientists were finally able to recognise the particular patterns that distinguish the two species. “The structure of moth's eyes is perfectly organised. Nipples are highly ordered, and preferred directions are exhibited in the structural organisation”, explains Kovalev, biophysicist and main author of the study. The scientists were already aware of the eye structure's strict symmetry. However, the fact that this goes right through to the nano-level and is repeated across the entire surface in so-called domains, is an important new finding.

So which symmetry does snake's skin have, which at first glance appears similar, perhaps even more perfectly organised? “Compared to the structure of the moth's eye, the structure of the snake's skin is unorganised”, explains Kovalev. He continued: “If we concentrate on one dimple in the skin, like one nipple in the eye, we only see a diffuse cloud of further dimples in the close surroundings. Neither particular directions nor the regular arrangement can be defined. This unorganised structure continues across the entire surface.”

On their own, these findings about the organised eye structure on the one hand and the unorganised skin structure on the other hand are not especially significant. But by taking the common denominator, i.e. investigating both structures with the same degree of resolution, it is possible for the first time to compare fundamentally different structures, explains Gorb: “However, the ‘coincidental’ degree of organisation is not coincidental, but a result of evolution. That would mean that the perfect organisation gives the moth its incredible night vision, while the imperfect organisation in snake's skin ensures the best friction properties.” That sounds logical, when you consider the laws of physics, that a symmetrical structure is necessary for good vision and good friction properties require the surface ordering in the contact with the ground to be as low as possible.

If the Kiel-based researchers had followed the usual approaches and compared snakes to snakes and moths to moths, the organisation of the elements at nano-level would have hardly been considered significant. “By comparing evolutionary distant species, we now see that the key to understanding surface functions must be right at the smallest level. Every biological surface is adapted to its environment, and these adaptations are reflected in the organisation of their smallest elements in a certain perfect or imperfect degree”, Gorb concludes.

Original publication
A. Kovalev, A. Filippov, S.N. Gorb. "Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis”; Applied Physics A 122:253
DOI: 10.1007/s00339-016-9795-2

Photos are available for download under:
http://www.uni-kiel.de/download/pm/2016/2016-096-1.jpg
Looking straight in the eye. Kiel’s scientists explore the nanostructure of animal cells. Photo, Copyright: Eulitz/Gorb

http://www.uni-kiel.de/download/pm/2016/2016-096-2.jpg
They got their research idea from the hallway of their own institute: Stanislav Gorb (left) and Alexander Kovalev (right).
Credit: Claudia Eulitz/CAU

http://www.uni-kiel.de/download/pm/2016/2016-096-3.jpg
Scanning electron microscopy image of the tail ventral scale in the snake Morelia viridis. The black shadowed gray circle marks a typical hexagonal arrangement of dimples, whereas both white and black circles mark five- and sevenfold symmetrical arrangement of dimples, respectively.
Credit: research group Gorb

http://www.uni-kiel.de/download/pm/2016/2016-096-4.jpg
Scanning electronmicroscopy image of a single ommatidium surface of an eye in the moth Manduca sexta.
Credit: research group Gorb

Contact
Prof. Dr. Stanislav N. Gorb
Zoological Institute at Kiel University
Tel. +49-431/880-4513
sgorb@zoologie.uni-kiel.de
http://www.uni-kiel.de/zoologie/gorb/topics.html

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Claudia Eulitz
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni


Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-137-motten-und-schlan...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>