Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peptoid Nanosheets at the Oil/Water Interface

04.09.2014

Berkeley Lab Reports New Route to Novel Family of Biomimetic Materials

From the people who brought us peptoid nanosheets that form at the interface between air and water, now come peptoid nanosheets that form at the interface between oil and water. Scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed peptoid nanosheets – two-dimensional biomimetic materials with customizable properties – that self-assemble at an oil-water interface.


Peptoid nanosheets are among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field. Peptoid nanosheets can be engineered to carry out a wide variety of functions.

This new development opens the door to designing peptoid nanosheets of increasing structural complexity and chemical functionality for a broad range of applications, including improved chemical sensors and separators, and safer, more effective drug delivery vehicles.

“Supramolecular assembly at an oil-water interface is an effective way to produce 2D nanomaterials from peptoids because that interface helps pre-organize the peptoid chains to facilitate their self-interaction,” says Ron Zuckermann, a senior scientist at the Molecular Foundry, a DOE nanoscience center hosted at Berkeley Lab. “This increased understanding of the peptoid assembly mechanism should enable us to scale-up to produce large quantities, or scale- down to screen many different nanosheets for novel functions.”

Zuckermann, who directs the Molecular Foundry’s Biological Nanostructures Facility, and Geraldine Richmond of the University of Oregon are the corresponding authors of a paper reporting these results in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled “Assembly and molecular order of two-dimensional peptoid nanosheets at the oil-water interface.” Co-authors are Ellen Robertson, Gloria Olivier, Menglu Qian and Caroline Proulx.

Peptoids are synthetic versions of proteins. Like their natural counterparts, peptoids fold and twist into distinct conformations that enable them to carry out a wide variety of specific functions. In 2010, Zuckermann and his group at the Molecular Foundry discovered a technique to synthesize peptoids into sheets that were just a few nanometers thick but up to 100 micrometers in length. These were among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field. Just as the properties of peptoids can be chemically customized through robotic synthesis, the properties of peptoid nanosheets can also be engineered for specific functions.

“Peptoid nanosheet properties can be tailored with great precision,” Zuckermann says, “and since peptoids are less vulnerable to chemical or metabolic breakdown than proteins, they are a highly promising platform for self-assembling bio-inspired nanomaterials.”

In this latest effort, Zuckermann, Richmond and their co-authors used vibrational sum frequency spectroscopy to probe the molecular interactions between the peptoids as they assembled at the oil-water interface. These measurements revealed that peptoid polymers adsorbed to the interface are highly ordered, and that this order is greatly influenced by interactions between neighboring molecules.

“We can literally see the polymer chains become more organized the closer they get to one another,” Zuckermann says.

The substitution of oil in place of air creates a raft of new opportunities for the engineering and production of peptoid nanosheets. For example, the oil phase could contain chemical reagents, serve to minimize evaporation of the aqueous phase, or enable microfluidic production.

“The production of peptoid nanosheets in microfluidic devices means that we should soon be able to make combinatorial libraries of different functionalized nanosheets and screen them on a very small scale,” Zuckermann says. “This would be advantageous in the search for peptoid nanosheets with the molecular recognition and catalytic functions of proteins.”

Zuckermann and his group at the Molecular Foundry are now investigating the addition of chemical reagents or cargo to the oil phase, and exploring their interactions with the peptoid monolayers that form during the nanosheet assembly process.

“In the future we may be able to produce nanosheets with drugs, dyes, nanoparticles or other solutes trapped in the interior,” he says. “These new nanosheets could have a host of interesting biomedical, mechanical and optical properties.”

This work was primarily funded by the DOE Office of Science and the Defense Threat Reduction Agency. Part of the research was performed at the Molecular Foundry and the Advanced Light Source, which are DOE Office of Science User Facilities.

Additional Information

For more about the research of Ronald Zuckermann go here

For more about the research of Geraldine Richmond go here

For more about the Molecular Foundry go here

#  #  #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.  For more, visit www.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Lynn Yarris | Eurek Alert!
Further information:
http://newscenter.lbl.gov/2014/09/03/peptoid-nanosheets-at-the-oilwater-interface/

Further reports about: Interface Laboratory Molecular Nanosheets Water highly interactions materials peptoid produce proteins

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>