New peptide could be effective treatment for triple negative breast cancer

A new peptide developed by researchers in Temple University's College of Science and Technology has demonstrated efficacy against triple negative breast cancer.

The leptin receptor antagonist peptide, developed by researchers Laszlo Otvos and Eva Surmacz, could become an attractive option for triple negative breast cancer treatment, especially in the obese patient population. The researchers published their findings online in the European Journal of Cancer.

According to the researchers, triple-negative breast cancers—which represent 10 percent of all mammary tumors—are characterized by the aggressive traits that is often found in younger women and have been associated with poor prognosis.

“Obesity increases the risk for triple-negative breast cancer development,” said Surmacz, an associate research professor in biology at Temple. “Because triple-negative breast cancer patients are unresponsive to current targeted therapies and other treatment options are only partially effective, new pharmacological modalities are urgently needed.”

Leptin, a protein that is always elevated in obese individuals and is higher in women than in men, can act locally within the body and promote cancer development by inducing the survival and growth of tumor cells, counteracting the effects of cancer therapies, and promoting metastasis. Previous studies by Surmacz suggested that leptin levels are significantly higher in aggressive breast tumors than in normal breast tissue.

In their study, the researchers examined if the leptin receptor was a viable target for the treatment of this type of cancer. It has been shown that in human triple negative breast cancer tissues, the leptin receptor was expressed in 92 percent and leptin in 86 percent of cases.

Using a mouse model of triple negative breast cancer, they tested the new leptin receptor antagonist peptide and compared it to conventional chemotherapy. The leptin receptor antagonist peptide extended the average survival time by 80 percent, compared to 21 percent for chemotherapy. The peptide was found to be non-toxic even up to the highest dose administered, said Sumacz.

“If this peptide, with its advantageous administration route and safety profile, can be developed as a drug it could be a useful addition to the existing oncology drug repertoire against various forms of cancer, including breast, brain, prostate and colon cancers,” said Sumacz.

The study was partially funded by the Pennsylvania Department of Health.

Otvos and Surmacz are inventors on an international patent application covering this peptide and analogues for the treatment of various cancers, arthritis and autoimmune disease forms. The patent is owned by Temple University. Start-up Peptherx, Inc has an exclusive option to negotiate a license to these compounds from Temple University. Peptherx, Inc is a therapeutic peptide company focused on designing, screening, and developing synthetic peptide modulators of adipokine signaling for the treatment of cancer, inflammatory/autoimmune and metabolic diseases.

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple's Office of University Communications at pmoretz@temple.edu.

Media Contact

Preston M. Moretz EurekAlert!

More Information:

http://www.temple.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors