Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New peptide could be effective treatment for triple negative breast cancer

01.03.2011
Obese population more at risk for this type of cancer

A new peptide developed by researchers in Temple University's College of Science and Technology has demonstrated efficacy against triple negative breast cancer.

The leptin receptor antagonist peptide, developed by researchers Laszlo Otvos and Eva Surmacz, could become an attractive option for triple negative breast cancer treatment, especially in the obese patient population. The researchers published their findings online in the European Journal of Cancer.

According to the researchers, triple-negative breast cancers—which represent 10 percent of all mammary tumors—are characterized by the aggressive traits that is often found in younger women and have been associated with poor prognosis.

"Obesity increases the risk for triple-negative breast cancer development," said Surmacz, an associate research professor in biology at Temple. "Because triple-negative breast cancer patients are unresponsive to current targeted therapies and other treatment options are only partially effective, new pharmacological modalities are urgently needed."

Leptin, a protein that is always elevated in obese individuals and is higher in women than in men, can act locally within the body and promote cancer development by inducing the survival and growth of tumor cells, counteracting the effects of cancer therapies, and promoting metastasis. Previous studies by Surmacz suggested that leptin levels are significantly higher in aggressive breast tumors than in normal breast tissue.

In their study, the researchers examined if the leptin receptor was a viable target for the treatment of this type of cancer. It has been shown that in human triple negative breast cancer tissues, the leptin receptor was expressed in 92 percent and leptin in 86 percent of cases.

Using a mouse model of triple negative breast cancer, they tested the new leptin receptor antagonist peptide and compared it to conventional chemotherapy. The leptin receptor antagonist peptide extended the average survival time by 80 percent, compared to 21 percent for chemotherapy. The peptide was found to be non-toxic even up to the highest dose administered, said Sumacz.

"If this peptide, with its advantageous administration route and safety profile, can be developed as a drug it could be a useful addition to the existing oncology drug repertoire against various forms of cancer, including breast, brain, prostate and colon cancers," said Sumacz.

The study was partially funded by the Pennsylvania Department of Health.

Otvos and Surmacz are inventors on an international patent application covering this peptide and analogues for the treatment of various cancers, arthritis and autoimmune disease forms. The patent is owned by Temple University. Start-up Peptherx, Inc has an exclusive option to negotiate a license to these compounds from Temple University. Peptherx, Inc is a therapeutic peptide company focused on designing, screening, and developing synthetic peptide modulators of adipokine signaling for the treatment of cancer, inflammatory/autoimmune and metabolic diseases.

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple's Office of University Communications at pmoretz@temple.edu.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>