Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New peptide could be effective treatment for triple negative breast cancer

Obese population more at risk for this type of cancer

A new peptide developed by researchers in Temple University's College of Science and Technology has demonstrated efficacy against triple negative breast cancer.

The leptin receptor antagonist peptide, developed by researchers Laszlo Otvos and Eva Surmacz, could become an attractive option for triple negative breast cancer treatment, especially in the obese patient population. The researchers published their findings online in the European Journal of Cancer.

According to the researchers, triple-negative breast cancers—which represent 10 percent of all mammary tumors—are characterized by the aggressive traits that is often found in younger women and have been associated with poor prognosis.

"Obesity increases the risk for triple-negative breast cancer development," said Surmacz, an associate research professor in biology at Temple. "Because triple-negative breast cancer patients are unresponsive to current targeted therapies and other treatment options are only partially effective, new pharmacological modalities are urgently needed."

Leptin, a protein that is always elevated in obese individuals and is higher in women than in men, can act locally within the body and promote cancer development by inducing the survival and growth of tumor cells, counteracting the effects of cancer therapies, and promoting metastasis. Previous studies by Surmacz suggested that leptin levels are significantly higher in aggressive breast tumors than in normal breast tissue.

In their study, the researchers examined if the leptin receptor was a viable target for the treatment of this type of cancer. It has been shown that in human triple negative breast cancer tissues, the leptin receptor was expressed in 92 percent and leptin in 86 percent of cases.

Using a mouse model of triple negative breast cancer, they tested the new leptin receptor antagonist peptide and compared it to conventional chemotherapy. The leptin receptor antagonist peptide extended the average survival time by 80 percent, compared to 21 percent for chemotherapy. The peptide was found to be non-toxic even up to the highest dose administered, said Sumacz.

"If this peptide, with its advantageous administration route and safety profile, can be developed as a drug it could be a useful addition to the existing oncology drug repertoire against various forms of cancer, including breast, brain, prostate and colon cancers," said Sumacz.

The study was partially funded by the Pennsylvania Department of Health.

Otvos and Surmacz are inventors on an international patent application covering this peptide and analogues for the treatment of various cancers, arthritis and autoimmune disease forms. The patent is owned by Temple University. Start-up Peptherx, Inc has an exclusive option to negotiate a license to these compounds from Temple University. Peptherx, Inc is a therapeutic peptide company focused on designing, screening, and developing synthetic peptide modulators of adipokine signaling for the treatment of cancer, inflammatory/autoimmune and metabolic diseases.

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple's Office of University Communications at

Preston M. Moretz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>