Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New peptide could be effective treatment for triple negative breast cancer

01.03.2011
Obese population more at risk for this type of cancer

A new peptide developed by researchers in Temple University's College of Science and Technology has demonstrated efficacy against triple negative breast cancer.

The leptin receptor antagonist peptide, developed by researchers Laszlo Otvos and Eva Surmacz, could become an attractive option for triple negative breast cancer treatment, especially in the obese patient population. The researchers published their findings online in the European Journal of Cancer.

According to the researchers, triple-negative breast cancers—which represent 10 percent of all mammary tumors—are characterized by the aggressive traits that is often found in younger women and have been associated with poor prognosis.

"Obesity increases the risk for triple-negative breast cancer development," said Surmacz, an associate research professor in biology at Temple. "Because triple-negative breast cancer patients are unresponsive to current targeted therapies and other treatment options are only partially effective, new pharmacological modalities are urgently needed."

Leptin, a protein that is always elevated in obese individuals and is higher in women than in men, can act locally within the body and promote cancer development by inducing the survival and growth of tumor cells, counteracting the effects of cancer therapies, and promoting metastasis. Previous studies by Surmacz suggested that leptin levels are significantly higher in aggressive breast tumors than in normal breast tissue.

In their study, the researchers examined if the leptin receptor was a viable target for the treatment of this type of cancer. It has been shown that in human triple negative breast cancer tissues, the leptin receptor was expressed in 92 percent and leptin in 86 percent of cases.

Using a mouse model of triple negative breast cancer, they tested the new leptin receptor antagonist peptide and compared it to conventional chemotherapy. The leptin receptor antagonist peptide extended the average survival time by 80 percent, compared to 21 percent for chemotherapy. The peptide was found to be non-toxic even up to the highest dose administered, said Sumacz.

"If this peptide, with its advantageous administration route and safety profile, can be developed as a drug it could be a useful addition to the existing oncology drug repertoire against various forms of cancer, including breast, brain, prostate and colon cancers," said Sumacz.

The study was partially funded by the Pennsylvania Department of Health.

Otvos and Surmacz are inventors on an international patent application covering this peptide and analogues for the treatment of various cancers, arthritis and autoimmune disease forms. The patent is owned by Temple University. Start-up Peptherx, Inc has an exclusive option to negotiate a license to these compounds from Temple University. Peptherx, Inc is a therapeutic peptide company focused on designing, screening, and developing synthetic peptide modulators of adipokine signaling for the treatment of cancer, inflammatory/autoimmune and metabolic diseases.

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple's Office of University Communications at pmoretz@temple.edu.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>