Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Team Links Schizophrenia Genetics to Disruption in How Brain Processes Sound

14.10.2011
Recent studies have identified many genes that may put people with schizophrenia at risk for the disease. But, what links genetic differences to changes in altered brain activity in schizophrenia is not clear.

Now, three labs at the Perelman School of Medicine at the University of Pennsylvania have come together using electrophysiological, anatomical, and immunohistochemical approaches - along with a unique high-speed imaging technique - to understand how schizophrenia works at the cellular level, especially in identifying how changes in the interaction between different types of nerve cells leads to symptoms of the disease. The findings are reported this week in the Proceedings of the National Academy of Sciences.

"Our work provides a model linking genetic risk factors for schizophrenia to a functional disruption in how the brain responds to sound, by identifying reduced activity in special nerve cells that are designed to make other cells in the brain work together at a very fast pace" explains lead author Gregory Carlson, PhD, assistant professor of Neuroscience in Psychiatry. "We know that in schizophrenia this ability is reduced, and now, knowing more about why this happens may help explain how loss of a protein called dysbindin leads to some symptoms of schizophrenia."

Previous genetic studies had found that some forms of the gene for dysbindin were found in people with schizophrenia. Most importantly, a prior finding at Penn showed that the dysbindin protein is reduced in a majority of schizophrenia patients, suggesting it is involved in a common cause of the disease.

For the current PNAS study, Carlson, Steven J. Siegel, MD, PhD, associate professor of Psychiatry, director of the Translational Neuroscience Program; and Steven E. Arnold, MD, director of the Penn Memory Center, used a mouse with a mutated dysbindin gene to understand how reduced dysbindin protein may cause symptoms of schizophrenia.

The team demonstrated a number of sound-processing deficits in the brains of mice with the mutated gene. They discovered how a specific set of nerve cells that control fast brain activity lose their effectiveness when dysbindin protein levels are reduced. These specific nerve cells inhibit activity, but do so in an extremely fast pace, essentially turning large numbers of cells on and off very quickly in a way that is necessary to normally process the large amount of information travelling into and around the brain.

Other previous work at Penn in the lab of Michael Kahana, PhD has shown that in humans the fast brain activity that is disrupted in mice with the dysbindin mutation is also important for short-term memory. This type of brain activity is reduced in people with schizophrenia and resistant to current therapy. Taken as a whole, this work may suggest new avenues of treatment for currently untreatable symptoms of schizophrenia, says Carlson.

Additional co-authors are: Konrad Talbot, Tobias B. Halene, Michael J. Gandal, Hala A. Kazi, Laura Schlosser, Quan H. Phung, and Raquel E. Gur, all from the Department of Psychiatry at Penn.

This work was funded in part by the National Institutes of Mental Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://health.upenn.edu/news/News_Releases/2011/10/schizophrenia-genetics/

Further reports about: Brain Disruption Genetics Neuroscience health services nerve cell risk factor schizophrenia

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>