Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Team Links Schizophrenia Genetics to Disruption in How Brain Processes Sound

14.10.2011
Recent studies have identified many genes that may put people with schizophrenia at risk for the disease. But, what links genetic differences to changes in altered brain activity in schizophrenia is not clear.

Now, three labs at the Perelman School of Medicine at the University of Pennsylvania have come together using electrophysiological, anatomical, and immunohistochemical approaches - along with a unique high-speed imaging technique - to understand how schizophrenia works at the cellular level, especially in identifying how changes in the interaction between different types of nerve cells leads to symptoms of the disease. The findings are reported this week in the Proceedings of the National Academy of Sciences.

"Our work provides a model linking genetic risk factors for schizophrenia to a functional disruption in how the brain responds to sound, by identifying reduced activity in special nerve cells that are designed to make other cells in the brain work together at a very fast pace" explains lead author Gregory Carlson, PhD, assistant professor of Neuroscience in Psychiatry. "We know that in schizophrenia this ability is reduced, and now, knowing more about why this happens may help explain how loss of a protein called dysbindin leads to some symptoms of schizophrenia."

Previous genetic studies had found that some forms of the gene for dysbindin were found in people with schizophrenia. Most importantly, a prior finding at Penn showed that the dysbindin protein is reduced in a majority of schizophrenia patients, suggesting it is involved in a common cause of the disease.

For the current PNAS study, Carlson, Steven J. Siegel, MD, PhD, associate professor of Psychiatry, director of the Translational Neuroscience Program; and Steven E. Arnold, MD, director of the Penn Memory Center, used a mouse with a mutated dysbindin gene to understand how reduced dysbindin protein may cause symptoms of schizophrenia.

The team demonstrated a number of sound-processing deficits in the brains of mice with the mutated gene. They discovered how a specific set of nerve cells that control fast brain activity lose their effectiveness when dysbindin protein levels are reduced. These specific nerve cells inhibit activity, but do so in an extremely fast pace, essentially turning large numbers of cells on and off very quickly in a way that is necessary to normally process the large amount of information travelling into and around the brain.

Other previous work at Penn in the lab of Michael Kahana, PhD has shown that in humans the fast brain activity that is disrupted in mice with the dysbindin mutation is also important for short-term memory. This type of brain activity is reduced in people with schizophrenia and resistant to current therapy. Taken as a whole, this work may suggest new avenues of treatment for currently untreatable symptoms of schizophrenia, says Carlson.

Additional co-authors are: Konrad Talbot, Tobias B. Halene, Michael J. Gandal, Hala A. Kazi, Laura Schlosser, Quan H. Phung, and Raquel E. Gur, all from the Department of Psychiatry at Penn.

This work was funded in part by the National Institutes of Mental Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://health.upenn.edu/news/News_Releases/2011/10/schizophrenia-genetics/

Further reports about: Brain Disruption Genetics Neuroscience health services nerve cell risk factor schizophrenia

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>