Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Team Links Schizophrenia Genetics to Disruption in How Brain Processes Sound

14.10.2011
Recent studies have identified many genes that may put people with schizophrenia at risk for the disease. But, what links genetic differences to changes in altered brain activity in schizophrenia is not clear.

Now, three labs at the Perelman School of Medicine at the University of Pennsylvania have come together using electrophysiological, anatomical, and immunohistochemical approaches - along with a unique high-speed imaging technique - to understand how schizophrenia works at the cellular level, especially in identifying how changes in the interaction between different types of nerve cells leads to symptoms of the disease. The findings are reported this week in the Proceedings of the National Academy of Sciences.

"Our work provides a model linking genetic risk factors for schizophrenia to a functional disruption in how the brain responds to sound, by identifying reduced activity in special nerve cells that are designed to make other cells in the brain work together at a very fast pace" explains lead author Gregory Carlson, PhD, assistant professor of Neuroscience in Psychiatry. "We know that in schizophrenia this ability is reduced, and now, knowing more about why this happens may help explain how loss of a protein called dysbindin leads to some symptoms of schizophrenia."

Previous genetic studies had found that some forms of the gene for dysbindin were found in people with schizophrenia. Most importantly, a prior finding at Penn showed that the dysbindin protein is reduced in a majority of schizophrenia patients, suggesting it is involved in a common cause of the disease.

For the current PNAS study, Carlson, Steven J. Siegel, MD, PhD, associate professor of Psychiatry, director of the Translational Neuroscience Program; and Steven E. Arnold, MD, director of the Penn Memory Center, used a mouse with a mutated dysbindin gene to understand how reduced dysbindin protein may cause symptoms of schizophrenia.

The team demonstrated a number of sound-processing deficits in the brains of mice with the mutated gene. They discovered how a specific set of nerve cells that control fast brain activity lose their effectiveness when dysbindin protein levels are reduced. These specific nerve cells inhibit activity, but do so in an extremely fast pace, essentially turning large numbers of cells on and off very quickly in a way that is necessary to normally process the large amount of information travelling into and around the brain.

Other previous work at Penn in the lab of Michael Kahana, PhD has shown that in humans the fast brain activity that is disrupted in mice with the dysbindin mutation is also important for short-term memory. This type of brain activity is reduced in people with schizophrenia and resistant to current therapy. Taken as a whole, this work may suggest new avenues of treatment for currently untreatable symptoms of schizophrenia, says Carlson.

Additional co-authors are: Konrad Talbot, Tobias B. Halene, Michael J. Gandal, Hala A. Kazi, Laura Schlosser, Quan H. Phung, and Raquel E. Gur, all from the Department of Psychiatry at Penn.

This work was funded in part by the National Institutes of Mental Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://health.upenn.edu/news/News_Releases/2011/10/schizophrenia-genetics/

Further reports about: Brain Disruption Genetics Neuroscience health services nerve cell risk factor schizophrenia

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>