Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Study on Silencing of Tumor Suppressor Gene Suggests New Target for Lymphoma

10.08.2011
Mariusz A. Wasik, MD, professor of Pathology and Laboratory Medicine, and Qian Zhang, MD, PhD, research assistant professor, both from the Perelman School of Medicine at the University of Pennsylvania, and their colleagues, found that a cancer-causing fusion protein works by silencing the tumor suppressor gene IL-2R common gamma-chain (IL-2Rã). The results, which appeared in a recent Proceedings of the National Academy of Sciences, suggest news targets for lymphoma and other types of cancer.

Fusion proteins are created by two genes -- originally coding for separate proteins -- joining together. Translation of the fusion gene into an active protein results in a molecule with properties derived from each of the originals. Fusion proteins are relatively commonly found in cancer cells.

The team looked at a fusion protein called NPM-ALK. Anaplastic lymphoma kinase (ALK), which physiologically is expressed only by neurons in fetal life, causes cancer when it is mistakenly expressed in non-neural tissues as a fusion protein with nucleophosphin (NPM) and other partners. NPM-ALK works by silencing the tumor suppressor gene IL-2Rã. The ALK fusion genes are active in several cancer types including some carcinomas of the lung, thyroid, and kidney.

The protein IL-2Rã is shared by receptors for several proteins called cytokines that play key roles in the maturation and growth of normal immune cells called CD4+ T cells. The Penn team found that IL-2Rã expression is inhibited in T-cell lymphoma cells expressing NPM-ALK as a result of epigenetic silencing. The IL-2Rã gene promoter is silenced by a chemical change to the DNA itself, in this case, the adding of a methyl group to DNA's molecular backbone.

Role of Epigenetic Silencing
Epigenetic gene silencing represents an important mechanism of inhibiting tumor suppressor gene expression in cancer cells. The silencing affects gene promoter regions within DNA, in two ways: methylation of the DNA and modification of histones and other proteins. The methylation is mediated by enzymes called DNA methyltransferases (DNMTs). Histones are modified by histone deacetylases.

Silencing of the IL-2Rã promoter via methylation is induced in malignant T cells by NPM-ALK by activating another protein called STAT3. STAT3 increases expression of one of the DNMTs and facilitates attachment of this and other DNMTs to the IL-2Rã gene promoter. Strikingly, when IL-2Rã is expressed, NPM-ALK disappears from the cancerous T cells, and they eventually die. These results demonstrate that NPM-ALK induces epigenetic silencing of the IL-2Rã gene and that IL-2Rã acts as a tumor suppressor by reciprocally inhibiting expression of NPM-ALK.

"Epigenetic silencing is not an independent event, and genetics — in the form of the aberrant fusion protein — drives an epigenetic change," says Wasik. "Is this phenomenon generalizable? Can we overcome the tumor suppressor gene silencing using inhibitors of DNA methylation, which are already approved to treat some forms of blood cancer, to inhibit the expression of NPM-ALK and possibly other cancer-causing proteins in patients?"

This approach could potentially complement inhibition of fusion protein activity as is routinely done for BCR-ABL in chronic myelogeneous leukemia and experimentally for ALK in lung carcinoma, lymphoma and other malignancies expressing ALK.

The research was funded by the grants from the National Cancer Institute and the Leukemia and Lymphoma Society.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>