Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Scientists Map Molecular Regulation of Fat-Cell Genetics

07.11.2008
Implications for Treating Diabetes, Obesity, and Heart Disease

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has used state-of-the-art genetic technology to map thousands of positions where a molecular “master regulator” of fat-cell biology is nestled in DNA to control genes in these cells. The findings appear online this week in Genes & Development.

The international obesity epidemic is leading to major health risks, including increased rates of diabetes, heart disease, and cancer. Obesity is caused by increased numbers of fat cells that store more fat than normal. “This research has the potential to lead to new ways to think about therapies aimed at reducing the number of fat cells or altering fat cell function in ways that reduce the complications of obesity,” says Lazar.

The master molecule is called PPAR gamma, a gene regulator that is also the target of a major class of antidiabetic drugs, which include Actos® and Avandia. PPAR gamma binds directly to DNA, regulating the production of proteins by turning genes on or off. Actos® and Avandia are effective in treating diabetes, but their side effects, which include weight gain, prevent them from being recommended as a first-line therapy. The drugs bind to PPAR gamma in the nucleus of fat cells, which affects the expression of many genes, about twenty of which were previously known.

New biocomputing methods allowed first author Martina I. Lefterova, a PhD candidate in the Lazar lab, to discover roughly 5,300 additional sites that PPAR gamma targets in fat-cell DNA. The amount of data is enormous, and may allow additional insights into how fat-cell genes are regulated.

“Until now, we were looking at how PPAR gamma works one gene at a time,” says Lazar. “It’s like we were peering at the pieces of a jigsaw puzzle in isolation. Now we can look at the full picture.” Analysis of the data has already led the Penn team to understand how different factors, including one called C/EBP, cooperate with PPAR gamma to fulfill fat cell functions.

Lefterova used a new technology called Chip on Chip that, in its first step, employs an antibody to isolate the segments of DNA attached to PPAR gamma. Then in the second step, a microarray chip is used to determine the genetic sequences of the isolated DNA.

Decreasing the side effects associated with antidiabetic drugs is the main clinical goal of this work. The major side effects related to the mechanisms of these drugs is increased fat and increased edema, or water weight gain, so understanding exactly where and how these drugs affect gene regulators like PPAR gamma—whether their binding to PPAR gamma turns genes on or off—is important.

“We want to be able to determine which genes we want to affect in one case, but not the other, in order to eliminate unwanted side effects, but keep the positive anti-diabetic effects,” says Lazar.

In addition to Lazar, Penn co-authors are David Steger, Michael Schupp, Ana Cristancho, Jonathan Schug, Dan Feng David Zhuo, and Christian Stoeckert, Jr. This was a collaboration with Shirley Liu and Yong Zhang of the Dana-Farber Cancer Institute in Boston. The National Institute of Diabetes, Digestive, and Kidney Diseases and the National Cancer Institute provided funding for this research.

###

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>