Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Help Graft Olfactory Receptors onto Nanotubes

27.07.2011
Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Because olfactory receptors belong to a larger class of proteins that are involved in passing signals through the cell membrane, these devices could have applications beyond odor sensing, such as pharmaceutical research.

The research was led by professor A. T. Charlie Johnson, postdoctoral fellow Brett R. Goldsmith and graduate student Mitchell T. Lerner of the Department of Physics and Astronomy in the School of Arts and Sciences, along with assistant professor Bohdana M. Discher and postdoctoral fellow Joseph J. Mitala Jr. of the Department of Biophysics and Biochemistry at Penn’s Perelman School of Medicine. They collaborated with researchers from the Monell Chemical Senses Center, the University of Miami, the University of Illinois, Princeton University and two private companies, Nanosense Inc. and Evolved Machines Inc.

Their work was published in the journal ACS Nano.

The Penn team worked with olfactory receptors derived from mice, but all olfactory receptors are part of a class of proteins known as G Protein Coupled Receptors, or GPCRs. These receptors sit on the outer membrane of cells, where certain chemicals in the environment can bind to them. The binding action is the first step in a chemical cascade that leads to a cellular response; in the case of an olfactory receptor, this cascade leads to the perception of a smell.

The Penn team succeeded in building an interface between this complicated protein and a carbon nanotube transistor, allowing them to convert the chemical signals the receptor normally produces to electrical signals, which could be incorporated in any number of tools and gadgets.

“Our nanotech devices are read-out elements; they eavesdrop on what the olfactory receptors are doing, specifically what molecules are bound to them,” Johnson said.

As the particular GPCR the team worked with was an olfactory receptor, the test case for their nanotube device was to function as sensor for airborne chemicals.

“If there’s something in the atmosphere that wants to bind to this molecule, the signal we get through the nanotube is about what fraction of the time is something bound or not. That means we can get a contiguous read out that’s indicative of the concentration of the molecule in the air,” Johnson said.

While one could imagine scaling up these nanotube devices into a synthetic nose — making one for each of the approximately 350 olfactory GPCRs in a human nose, or the 1,000 found in a dog’s — Johnson thinks that medical applications are much closer to being realized.

“GPCRs are common drug targets,” he said. “Since they are known to be very important in cell-environment interactions, they’re very important in respect to disease pathology. In that respect, we now have a pathway into interrogating what those GPCRs actually respond to. You can imagine building a chip with many of these devices, each with different GPCRs, and exposing them all at once to various drugs to see which is effective at triggering a response.”

Figuring out what kinds of drugs bind most effectively to GPCRs is important because pathogens often attack through those receptors as well. The better a harmless chemical attaches to a relevant GPCR, the better it is at blocking the disease.

The Penn team also made a technical advancement in stabilizing GPCRs for future research.

“In the past, if you take a protein out of a cell and put it onto a device, it might last for a day. But here, we embedded it in a nanoscale artificial cell membrane, which is called a nanodisc,” Johnson said. “When we did that, they lasted for two and half months, instead of a day.”

Increasing the lifespans of such devices could be beneficial to two scientific fields with increasing overlap, as the as evidenced by the large, interdisciplinary research team involved in the study.

“The big picture is integrating nanotechnology with biology, “ Johnson said. “These complicated molecular machines are the prime method of communication between the interior of the cell and the exterior, and now we’re incorporating their functionality with our nanotech devices.”

In addition to Johnson, Goldsmith, Lerner, Discher and Mitala, the research was conducted by Jesusa Josue and Joseph G. Brand of Monell; Alan Gelperin of Monell and Princeton; Ana Castro and Charles W. Luetje of the University of Miami; Timothy H. Bayburt and Stephen G. Sligar of the University of Illinois, Urbana; Samuel M. Khamis of Adamant Technologies, Ryan A. Jones of Nanosense Inc.; and Paul A. Rhodes of Nanosense Inc. and Evolved Machines Inc.

The research was supported by the Defense Advanced Research Projects Agency’s RealNose project, Penn’s Nano/Bio Interface Center, the National Science Foundation and the Department of Defense.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>