Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find a new twist in a blindness-causing disease gene

22.09.2011
After more than three decades of research, University of Pennsylvania veterinarians and vision-research scientists, with associates at Cornell University, have identified a gene responsible for a blindness-inducing disease that afflicts dogs. In the process, the Penn scientists may have discovered clues about how retinal cells, and perhaps even neurons, can be regenerated.

The research was conducted by Gustavo D. Aguirre, William A. Beltran, Agnes I. Berta and Sem Genini of Penn's School of Veterinary Medicine, along with Kathleen Boesze-Battaglia of the Penn School of Dental Medicine. They collaborated with researchers from Cornell, the National Eye Institute and the Semmelweis University of Medicine, in Hungary.

Their study was published in the open access journal PLOS One.

At the University of Pennsylvania in the late 1960s, Aguirre was studying rod dysplasia, a genetic disease that causes blindness in a rare breed of dog known as the Norwegian Elkhound. After the blinding disorder in the original group of dogs was eliminated, Aguirre and his colleagues endeavored to find other dogs that suffered from the same condition, only to discover a similar but separate disease instead.

This disease, which they termed early retinal degeneration, or ERD, resulted in the same blindness but in a much shorter period of time; the afflicted dogs became completely blind within a year of birth, instead of between two and four years.

Interested in gene therapies to cure blindness, Aguirre and his colleagues began narrowing down the list genes that could be responsible for ERD. As the relevant technologies improved, the researchers were able to work faster, but it was only recently that they discovered the culprit.

It was hiding in an unlikely place in the dog's genome.

"After developing the dog genetic map in the late '90s and then mapping the disease to a known region of the genome," Aguirre said, "we had a physical interval to look for this gene in, but we had to prioritize gene candidates by their location and what their function is. This gene was at the bottom of our list because it's normally only found in the brain and was not related to any known vision defect. But, lo and behold, it's actually a very important gene to the retina."

Identifying the gene is a first step to explaining a puzzling aspect of ERD: a "plateau" in its progression. The visual cells in the retina initially remain but then are lost and vision quickly fades. Microscopic analyses of retinas from afflicted dogs showed that, during this period, vision-related cells die at an accelerated rate but are just as quickly replaced; the cell death and compensatory formation of new ones is a new and totally unexpected finding in diseases of the retina. This work was done by Aìgnes Berta, a medical doctor from Budapest who, as part of her Ph.D. studies, spent a year in the Aguirre lab through a Fulbright educational exchange program fellowship.

The researcher used an antibody-labeling system to identify how the photoreceptors were affected. The two types of these cells responsible for vision are rods, which are very sensitive to dim light, and cones, which distinguish color. Humans have short, medium and long cones, which correspond to the wavelengths of light they detect. Dogs and most other mammalian species have only two cone types, one that is sensitive to short wavelengths and another that absorbs light in both the long and medium wavelength range.

"When Berta used an antibody label for the medium and long cones, it was very discreet, but when she used label for the short wave length sensitive cones a population of rods was also labeled," Aguirre said. "We saw that as the cell proliferates it goes back to a primordial, hybrid photoreceptor."

Though the exact function of the relevant gene has yet to be identified, it is likely involved in the control of the cell division cycle. Normally, photoreceptors cells in the retina stop dividing shortly after birth. These hybrid photoreceptors, however, continue to divide during ERD's plateau period.

Understanding what keeps those cells rejuvenating may hold the key for therapies that can hold off the onset of blindness, or even reverse it.

"These cells are abnormal," Aguirre said. "Normally, there is no good evidence of large amounts of new cells being created in the retina or the central nervous system. We can better understand the way that the photoreceptor cells divide by studying this disease and potentially manipulate the gene in such a way that you could get the division component without the abnormal component. If we could regrow our diseased retinal cells, it would be wonderful."

In addition to Aguirre, Beltran, Berta, Genini and Boesze-Battaglia, the research was conducted by Orly Goldstein and Gregory M. Acland of the College of Veterinary Medicine at Cornell University, Paul J. O'Brien of the National Eye Institute and Ágoston Szél of Semmelweis University.

The research was supported by the National Eye Institute, the National Institutes of Health, a Fulbright Educational Exchange Program Fellowship, the Foundation Fighting Blindness Center, the Van Sloun Fund for Canine Genetic Research, Hope for Vision, The ONCE International Prize for R&D in Biomedicine and New Technologies for the Blind.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>