Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find a new twist in a blindness-causing disease gene

22.09.2011
After more than three decades of research, University of Pennsylvania veterinarians and vision-research scientists, with associates at Cornell University, have identified a gene responsible for a blindness-inducing disease that afflicts dogs. In the process, the Penn scientists may have discovered clues about how retinal cells, and perhaps even neurons, can be regenerated.

The research was conducted by Gustavo D. Aguirre, William A. Beltran, Agnes I. Berta and Sem Genini of Penn's School of Veterinary Medicine, along with Kathleen Boesze-Battaglia of the Penn School of Dental Medicine. They collaborated with researchers from Cornell, the National Eye Institute and the Semmelweis University of Medicine, in Hungary.

Their study was published in the open access journal PLOS One.

At the University of Pennsylvania in the late 1960s, Aguirre was studying rod dysplasia, a genetic disease that causes blindness in a rare breed of dog known as the Norwegian Elkhound. After the blinding disorder in the original group of dogs was eliminated, Aguirre and his colleagues endeavored to find other dogs that suffered from the same condition, only to discover a similar but separate disease instead.

This disease, which they termed early retinal degeneration, or ERD, resulted in the same blindness but in a much shorter period of time; the afflicted dogs became completely blind within a year of birth, instead of between two and four years.

Interested in gene therapies to cure blindness, Aguirre and his colleagues began narrowing down the list genes that could be responsible for ERD. As the relevant technologies improved, the researchers were able to work faster, but it was only recently that they discovered the culprit.

It was hiding in an unlikely place in the dog's genome.

"After developing the dog genetic map in the late '90s and then mapping the disease to a known region of the genome," Aguirre said, "we had a physical interval to look for this gene in, but we had to prioritize gene candidates by their location and what their function is. This gene was at the bottom of our list because it's normally only found in the brain and was not related to any known vision defect. But, lo and behold, it's actually a very important gene to the retina."

Identifying the gene is a first step to explaining a puzzling aspect of ERD: a "plateau" in its progression. The visual cells in the retina initially remain but then are lost and vision quickly fades. Microscopic analyses of retinas from afflicted dogs showed that, during this period, vision-related cells die at an accelerated rate but are just as quickly replaced; the cell death and compensatory formation of new ones is a new and totally unexpected finding in diseases of the retina. This work was done by Aìgnes Berta, a medical doctor from Budapest who, as part of her Ph.D. studies, spent a year in the Aguirre lab through a Fulbright educational exchange program fellowship.

The researcher used an antibody-labeling system to identify how the photoreceptors were affected. The two types of these cells responsible for vision are rods, which are very sensitive to dim light, and cones, which distinguish color. Humans have short, medium and long cones, which correspond to the wavelengths of light they detect. Dogs and most other mammalian species have only two cone types, one that is sensitive to short wavelengths and another that absorbs light in both the long and medium wavelength range.

"When Berta used an antibody label for the medium and long cones, it was very discreet, but when she used label for the short wave length sensitive cones a population of rods was also labeled," Aguirre said. "We saw that as the cell proliferates it goes back to a primordial, hybrid photoreceptor."

Though the exact function of the relevant gene has yet to be identified, it is likely involved in the control of the cell division cycle. Normally, photoreceptors cells in the retina stop dividing shortly after birth. These hybrid photoreceptors, however, continue to divide during ERD's plateau period.

Understanding what keeps those cells rejuvenating may hold the key for therapies that can hold off the onset of blindness, or even reverse it.

"These cells are abnormal," Aguirre said. "Normally, there is no good evidence of large amounts of new cells being created in the retina or the central nervous system. We can better understand the way that the photoreceptor cells divide by studying this disease and potentially manipulate the gene in such a way that you could get the division component without the abnormal component. If we could regrow our diseased retinal cells, it would be wonderful."

In addition to Aguirre, Beltran, Berta, Genini and Boesze-Battaglia, the research was conducted by Orly Goldstein and Gregory M. Acland of the College of Veterinary Medicine at Cornell University, Paul J. O'Brien of the National Eye Institute and Ágoston Szél of Semmelweis University.

The research was supported by the National Eye Institute, the National Institutes of Health, a Fulbright Educational Exchange Program Fellowship, the Foundation Fighting Blindness Center, the Van Sloun Fund for Canine Genetic Research, Hope for Vision, The ONCE International Prize for R&D in Biomedicine and New Technologies for the Blind.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>