Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn biophysicists create new model for protein-cholesterol interactions in brain and muscle tissue

30.09.2008
Biophysicists at the University of Pennsylvania have used 3,200 computer processors and long-established data on cholesterol's role in the function of proteins to clarify the mysterious interaction between cholesterol and neurotransmitter receptors.

The results provide a new model of behavior for the nicotinic acetylcholine receptor, a well studied protein involved in inflammation, Alzheimer's disease, Parkinson's disease, schizophrenia, epilepsy, the effect of general anesthetics and addiction to alcohol, nicotine and cocaine.

Moreover, the results apply to closely related receptors that bind serotonin and GABA, which are neurotransmitters directly involved in regulation of mood and sleep.

The findings have broad implications for, among other fields, pharmacology. Drug development in this arena has to take into account the structure and chemical makeup of this receptor, both of which researchers now say were incomplete. Drugs acting on the receptor have been thought to interact with the protein as though it were isolated.

Now, researchers believe that drugs binding to the receptor not only interact with amino acids — the building blocks of the protein receptor — but also cholesterol tucked away within the protein. The shift in thinking transforms the understanding of this receptor in many ways, from shape and structure to its interaction with its environment and its response to neurotransmitters. The new model should spark a reexamination of several decades of research on the receptor's structure and function.

Researchers demonstrated that the receptor, also know as nAChR, contains internal sites capable of containing cholesterol which serve to stabilize the protein's structure. Furthermore, molecular simulations revealed that both surface sites and deeply buried sites within the protein require cholesterol, which directly supports contacts between the agonist-binding domain and the pores that are thought to be essential for activation of the receptor.

"The result was surprising because, according to most traditional biological models, cholesterol is part of the membrane, not part of the protein," Grace Brannigan, a researcher with the Center for Molecular Modeling at Penn, said. "Our model takes cholesterol out of a background role in the protein's structure and function and puts it on center stage."

Researchers used prior data on how the receptor depends on cholesterol to function plus a computer cluster to run simulations of some 230,000 atoms and their interactions over time. From the raw data, researchers used visualization software to create a model of behavior between the protein and the cholesterol required to function properly.

The study focused on the nicotinic acetylcholine receptor, an ion channel found in both brain and muscle cells. The neurotransmitter acetylcholine, released by upstream nerve cells, binds to portions of the protein on the outside of brain and muscle cells causing the channel to open and allow ions to cross the membrane. Anesthetics, for example, close the channel, which can reduce sensations and cause the memory loss associated with being "put under."

The receptor is a cation-selective channel central to both neuronal and muscular processes and is considered the prototype for ligand-gated ion channels, leading to decades of study to determine its structure. Penn researchers sought to further understand the structure recently determined through cryo-electron microscopy by British and Japanese researchers. Measuring structural details is a difficult task for any protein embedded within a membrane, which can be easily destroyed during the extraction process. The published structure included large, mysterious holes in the protein density.

"It's like looking at the shape of a lock and realizing that you've had the key in your pocket the whole time," Jerome Henin, a researcher with the Center for Molecular Modeling, said. "We found that the holes are the perfect size and shape for cholesterol, which is significant because it has been known for 30 years that this type of protein can only do its job properly if there is cholesterol nearby."

Assuming that cholesterol-shaped holes may indicate a role for cholesterol, researchers began massive simulations on the protein with and without cholesterol present and found that only with cholesterol does the protein behave as expected from experimental data.

This result could also have important implications for understanding recent data indicating that low cholesterol in brain cells has harmful effects on memory, concentration and mood. Twenty-five percent of cholesterol within the body is found in brain cells, where it seems to perform many important roles. Most of the theories for how cholesterol improves the function of brain cells have focused on its effect on the membranes that enclose these cells, but this work suggests that cholesterol may play a much more direct role by burying itself within some of the proteins that are necessary for cells to communicate.

The study was performed by Brannigan, Henin and Michael L. Klein of the Center for Molecular Modeling in the Department of Chemistry at Penn as well as Richard Law of the Lawrence Livermore National Laboratory and Roderic Eckenhoff of the Department of Anesthesiology and Critical Care at the Penn School of Medicine. It was published in the Proceedings of the National Academy of Sciences.

Funding for this research was provided by the National Institutes of Health and the National Science Foundation, with TeraGrid resources provided by the National Center for Supercomputing Applications.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>