Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Biologists Say Species Accumulate on Earth at Slower Rates Than in the Past

30.09.2010
Computational biologists at the University of Pennsylvania say that species are still accumulating on Earth but at a slower rate than in the past.

In the study, published in the journal PLoS Biology, Penn researchers developed a novel computational approach to infer the dynamics of species diversification using the family trees of present-day species. Using nine patterns of diversification as alternative models, they examined 289 phylogenies, or evolutionary trees, representing amphibians, arthropods, birds, mammals, mollusks and flowering plants.

The study demonstrated that diversity is generally not at equilibrium. Nonetheless, speciation rates have typically decayed over time, suggesting that the diversification of species is somehow constrained, and that equilibrium may eventually be reached.

There are many competing theories for how species diversify and become extinct. Some suggest that species continually accumulate in time, always finding new ecological niches. Other theories suggest that the number of coexisting species is limited and that we will eventually have equilibrium. In other words, a species will be born only when another goes extinct.

The question that intrigued the Penn researchers was whether species diversity on Earth is in equilibrium or is still expanding. They also wondered whether the world has an invisible stop sign on species diversity that would eventually limit the diversity on the planet.

“What we see is diversification rates that are declining but not yet to zero,” said Joshua Plotkin, assistant professor in the Department of Biology in the School of Arts and Sciences at Penn. “We are not yet in equilibrium. Either there is a limit to the total species number and we haven’t reached it yet, or there is no such limit. But the rates of diversification are typically falling; when we will hit zero is not yet obvious.”

While it is clear that Earth has recently lost species due to human impact, this study dealt with much longer, geologic time scales. Understanding these long-term dynamics is central to our understanding of what controls present-day biodiversity across groups and regions.

Even though the study did not deal with the current anthropogenic loss of biodiversity, researchers were surprised at how little extinction they actually saw in the evolutionary trees of species. The fossil record shows that many species have gone extinct over geologic time. For example, the diversity of whales has decreased during the last ~12 million years. But extinction was rarely apparent in this analysis of evolutionary trees.

The study also shows how analyzing molecular phylogenies can shed light on patterns of speciation and extinction; future work may reconcile this approach with the fossil record.

“By taking advantage of existing data from the flood of genomic research, we hope to combine efforts with paleontologists gathering fossil data,” Plotkin said.

The study was conducted by Hélène Morlon and Plotkin of the Department of Biology in Penn’s School of Arts and Sciences and Matthew D. Potts of the University of California, Berkeley.

It was funded by the Burroughs Wellcome Fund, David and Lucile Packard Foundation, James S. McDonnell Foundation and Alfred P. Sloan Foundation.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu
http://www.upenn.edu/pennnews/news/penn-biologists-say-species-accumulate-earth-slower-rates-past

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>