Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn bioengineers create simulator to test blood platelets in virtual heart attacks

21.06.2010
A team of bioengineers from the University of Pennsylvania Institute for Medicine and Engineering have trained a computer neural network model to accurately predict how blood platelets would respond to complex conditions found during a heart attack or stroke.

Using an automated, robotic system, they exposed human blood platelets to hundreds of different combinations of biological stimuli like those experienced during a heart attack. This was done by fingerprinting each platelet sample with 34,000 data points obtained in response to all possible pairs of stimuli.

The team applied the system to predict intracellular calcium signaling responses of human platelets to any combination of up to six different agonists used at different dosages and even applied at different times. The model predicted platelet responses accurately, even distinguishing between 10 blood donors, demonstrating an efficient approach for predicting complex chemical responses in a patient-specific disease milieu.

The strategy involves selecting molecules that react with blood platelets under high-risk situations, such as a heart attack, measuring the cellular responses to all pairwise combinations of stimuli in a high-throughput manner and then training a two-layer, nonlinear, neural network with the measured cellular responses. For platelets, it was discovered that the complexity of integrating numerous signals can be built up from the responses to simpler conditions involving only two stimuli.

"With patient-specific computer models, it is now possible to predict how an individual's platelets would respond to thousands of 'in silico' heart-attack scenarios," said Scott L. Diamond, professor of chemical and biomolecular engineering and the director of the Penn Center for Molecular Discovery. "With this information we can identify patients at risk of thrombosis or improve upon current forms of anti-platelet therapies."

The research team developed its experimental/computational technique, called Pairwise Agonist Scanning, or PAS, to define platelet response to combinations of agonists, chemicals that bind in this case to platelet cells, initiating a cellular response. Future research would include the application of PAS to clinical stimuli that platelets encounter such as epinephrine, serotonin and nitric oxide, which would map a major portion of the entire platelet response. The use of PAS with certain pharmacological agents would allow further assessment of individual clinical risk, or sensitivity to therapy.

Platelet cells respond in a patient-specific manner to multiple signals, and their reaction to thrombotic signals is central to the 1.74 million heart attacks and strokes, 1.115 million angiograms and 0.652 million stent placements in the United States each year. For Diamond, platelets are also ideal cellular systems for quantifying the effects of multiple signaling pathways because they are anucleate, easily obtained from donors and amenable to automated liquid handling. Few experimental or computational tools are available for building a global understanding of how the platelet integrates multiple stimuli present at varying levels.

Researchers working in systems biology seek to understand blood as a reactive biological fluid whose function changes through a variety of physical and chemical stimuli such as hemodynamics, vessel-wall characteristics, platelet metabolism, numerous coagulation factors in plasma and small molecules released during thrombosis.

Because platelet cells respond to numerous signals and chemical doses and integrate their responses to these stimuli, efficient and speedy computational methods are needed to survey such high-dimensional systems. Evaluating the cellular response to merely pairs of stimuli offers a direct and rapid sampling of the cellular response, which can be built up to predict even more complex situations and may eventually lead to a predictive clinical tool for cardiovascular disease.

The study, published in the current issue of Nature Biotechnology and supported by the National Institutes of Health, was conducted by Diamond and Manash S. Chatterjee of the Department of Chemical and Biomolecular Engineering, Jeremy E. Purvis of the Department of Genomics and Computational Biology and Lawrence F. Brass of the Department of Medicine at Penn.

All are members of the Institute for Medicine and Engineering at Penn.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>