Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peering into the protein pathways of a cell

08.07.2013
UConn researchers shed new light on how cellular transport systems harness energy to perform their work inside the cell

Using highly sensitive fluorescent probes, a team of scientists from the University of Connecticut has captured the never-before-seen structural dynamics of an important protein channel inside the cell's primary power plant – the mitochondrion.

The UConn team's study found that the channel complex - known as the translocase of the inner mitochondrial membrane 23 or TIM23 – is not only directly coupled to the energized state of the mitochondrial inner membrane as scientists have long suspected, it also changes its fundamental structure - altering the helical shape of protein segments that line the channel - when voltage along the membrane's electrical field drops.

The research, which appears this week in the peer-reviewed journal Nature Structural & Molecular Biology, explains how the energized state of the membrane drives the structural dynamics of membrane proteins and sheds new light on how cellular transport systems harness energy to perform their work inside the cell.

It also shows how fluorescent mapping at the subcelllar level may reveal new insights into the underlying causes of neurodegenerative and metabolic disorders associated with mitochondrial function.

In an overview of the research accompanying the paper's publication, Nikolaus Pfanner of the University of Freiberg in Germany and an international leader in the field of cellular protein trafficking, and several members of his research group, called the study "a major step towards a molecular understanding of a voltage-gated protein translocase."

"The molecular nature of voltage sensors in membrane proteins is a central question in biochemical research," Pfanner and his colleagues said. "The study…is not only of fundamental importance for our understanding of mitochondrial biogenesis, but also opens up new perspectives in the search for voltage-responsive elements in membrane proteins."

To conduct the study, UConn researchers incorporated cysteine residues modified with a fluorescent probe at specific positions along a transmembrane segment of a TIM23 complex derived from a common species of yeast, Saccharomyces cerevisiae. The team then monitored the probes in real time to observe how the channel's voltage-gating and structure responded to induced changes in the inner membrane's electrical field.

"It's an indirect way of looking at the structure of something, but because we are able to look into an actually functioning mitochondrion, it's given us a whole world of new information," says Nathan N. Alder, an assistant professor in the Department of Molecular and Cell Biology in UConn's College of Liberal Arts and Sciences and the research team's leader.

The study was supported by grants from the National Science Foundation, the National Institutes of Health and the Robert A. Welch Foundation.

"That the magnitude of the voltage gradient across the membrane could play a significant role in defining the structure of these proteins is probably one of the most significant elements of this research," Alder says.

The next phase of the research will look toward isolating the TIM23 protein channel complex in an artificial system to see if it continues to respond to voltage fluctuations outside of its natural habitat. The research team is also hoping to identify the particular parts of the protein complex that are acting as voltage sensors.

"Once we start to identify exactly what is the voltage sensor, we will have a better understanding of the translocase process and ultimately we can apply this knowledge to other kinds of protein transporters whose dysfunction has been implicated in the etiology of diseases such as cardiovascular disease and cancer," Alder says. "If their function is tied to the energized state of the membrane, we'll be able to see whether defects in that ability to couple to the membrane might be associated with the pathogenesis of these diseases."

Colin Poitras | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>