Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peering into the protein pathways of a cell

08.07.2013
UConn researchers shed new light on how cellular transport systems harness energy to perform their work inside the cell

Using highly sensitive fluorescent probes, a team of scientists from the University of Connecticut has captured the never-before-seen structural dynamics of an important protein channel inside the cell's primary power plant – the mitochondrion.

The UConn team's study found that the channel complex - known as the translocase of the inner mitochondrial membrane 23 or TIM23 – is not only directly coupled to the energized state of the mitochondrial inner membrane as scientists have long suspected, it also changes its fundamental structure - altering the helical shape of protein segments that line the channel - when voltage along the membrane's electrical field drops.

The research, which appears this week in the peer-reviewed journal Nature Structural & Molecular Biology, explains how the energized state of the membrane drives the structural dynamics of membrane proteins and sheds new light on how cellular transport systems harness energy to perform their work inside the cell.

It also shows how fluorescent mapping at the subcelllar level may reveal new insights into the underlying causes of neurodegenerative and metabolic disorders associated with mitochondrial function.

In an overview of the research accompanying the paper's publication, Nikolaus Pfanner of the University of Freiberg in Germany and an international leader in the field of cellular protein trafficking, and several members of his research group, called the study "a major step towards a molecular understanding of a voltage-gated protein translocase."

"The molecular nature of voltage sensors in membrane proteins is a central question in biochemical research," Pfanner and his colleagues said. "The study…is not only of fundamental importance for our understanding of mitochondrial biogenesis, but also opens up new perspectives in the search for voltage-responsive elements in membrane proteins."

To conduct the study, UConn researchers incorporated cysteine residues modified with a fluorescent probe at specific positions along a transmembrane segment of a TIM23 complex derived from a common species of yeast, Saccharomyces cerevisiae. The team then monitored the probes in real time to observe how the channel's voltage-gating and structure responded to induced changes in the inner membrane's electrical field.

"It's an indirect way of looking at the structure of something, but because we are able to look into an actually functioning mitochondrion, it's given us a whole world of new information," says Nathan N. Alder, an assistant professor in the Department of Molecular and Cell Biology in UConn's College of Liberal Arts and Sciences and the research team's leader.

The study was supported by grants from the National Science Foundation, the National Institutes of Health and the Robert A. Welch Foundation.

"That the magnitude of the voltage gradient across the membrane could play a significant role in defining the structure of these proteins is probably one of the most significant elements of this research," Alder says.

The next phase of the research will look toward isolating the TIM23 protein channel complex in an artificial system to see if it continues to respond to voltage fluctuations outside of its natural habitat. The research team is also hoping to identify the particular parts of the protein complex that are acting as voltage sensors.

"Once we start to identify exactly what is the voltage sensor, we will have a better understanding of the translocase process and ultimately we can apply this knowledge to other kinds of protein transporters whose dysfunction has been implicated in the etiology of diseases such as cardiovascular disease and cancer," Alder says. "If their function is tied to the energized state of the membrane, we'll be able to see whether defects in that ability to couple to the membrane might be associated with the pathogenesis of these diseases."

Colin Poitras | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>