Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pediatric brain tumors

21.09.2011
Regulatory protein represents potential drug target

Medulloblastomas constitute the most frequent class of malignant childhood brain tumor. Tumors of this type arise due to the uncontrolled proliferation of immature nerve cells in the developing brain, and there is no targeted treatment available.

A research team based at LMU‘s Center for Neuropathology and Prion Research and led by Privatdozent Dr. Ulrich Schüller has now demonstrated that the regulatory protein FoxM1 is essential for the continued growth of these tumor cells. Moreover, the level of FoxM1 expressed in the cells is significantly, and negatively, correlated with a patient’s survival time.

The protein therefore provides a useful prognostic marker, which should allow oncologists to gauge the malignancy of tumors and select the most effective therapeutic strategy for the individual patient. Furthermore, FoxM1 may provide a novel point of attack for the development of new ways to treat the condition. Schüller and his team were able to reduce FoxM1 levels in tumor cells by exposing them to the antibiotic siomycin A, and showed that the drug also inhibits tumor growth. “If further work on laboratory cell cultures and in living organisms confirms these results, siomycin could turn out to be an effective drug for the treatment of medulloblastoma,” Schüller says. (Clinical Cancer Research, published OnlineFirst 14.September 2011)

Research conducted over the past 10 years has shown that medulloblastomas arise as a result of aberrant activation of certain molecular signaling pathways. Schüller and his team set out to determine whether the transcription factor FoxM1 plays a role in supporting the growth of this type of tumor and, if so, whether it might serve as a drug target for the development of an effective therapy for the disease.

Transcription factors determine the suite of proteins present in a given cell by defining which of the genes encoded in the genomic DNA are transcribed into RNA copies that can program protein synthesis. The so-called Forkhead-box (Fox) proteins are transcription factors that are particularly concerned with the regulation of cell growth, division and differentiation, and fully differentiated cells do not proliferate further. FoxM1 activates genes that promote cell division and simultaneously turns off genes that inhibit proliferation. Since uncontrolled proliferation is the basic hallmark of cancer cells, understanding and manipulating the function of FoxM1 has become a focus of cancer research. In several different types of cancer, including cancers of the breast, lung and prostate gland, increased amounts of FoxM1 have been found in tumor tissue. Indeed the protein has been shown to be necessary for growth of these tumors. Schüller and his team have now shown that this also true for medulloblastomas.

“One important result was that the amount of FoxM1 present in medulloblastoma cells is correlated with patient survival time,” says Schüller. Since it is relatively easy to estimate FoxM1 levels using laboratory tests, the molecule could possibly be used as a prognostic marker to guide the choice of treatment for each patient. Modern therapeutic options for medulloblastoma involve surgical removal of the tumor, followed by radiation and chemotherapy to eliminate any surviving tumor cells, but this approach is associated with serious side-effects. Furthermore, there are six different subtypes of medulloblastoma, which differ markedly in their malignancy and clinical prognosis. “That is why a good prognostic marker with which one could predict the aggressivity of tumors would be so useful,” says Schüller. The clinician could then adapt the therapeutic approach to the patient’s individual needs, and thus avoid using a sledgehammer to crack a nut.

Since FoxM1 is indispensable for the growth of medulloblastoma cells, it represents a potentially ideal drug target. With the aid of the antibiotic siomycin A, which specifically inhibits the production of FoxM1, Schüller was indeed able to inhibit the growth of medulloblastoma cells. These findings confirm and extend results obtained by other groups who have reported that siomycin A also hinders the growth of breast cancer cells. – And most importantly, Schüller‘s experiments showed that although FoxM1 is essential for tumor growth, other factors can apparently substitute for it during normal development. Hence blocking the action of FoxM1 by administering siomycin A should have no untoward effects on normal cells. Thus the antibiotic may make it possible, for the first time, to intervene directly and specifically in the process that gives rise to medulloblastomas, and provide the first therapeutic option that targets a major driver of the growth of such tumors.

The work was carried out by the Max Eder Junior Research Group in Pediatric Neuro-oncology, which is led by Ulrich Schüller and is supported by grants from the Deutsche Krebshilfe. (göd/PH)

Publication:
Expression of FoxM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients.
M. Priller, J. Pöschl, L. Abrao, A.O. von Bueren, Y.-J. Cho, S. Rutkowski, H.A. Kretzschmar, U. Schüller
Clinical Cancer Research, Published OnlineFirst 14. September 2011
doi: 10.1158/1078-0432.CCR-11-1214
Contact:
Priv.-Doz. Dr. med. Ulrich Schüller
Center for Neuropathology
LMU Munich
Phone: +49 89 2180 78114
Fax: +49 89 2180 78037
Email: ulrich.schueller@med.uni-muenchen.de

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
http://www.neuropathologie.med.uni-muenchen.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>