Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pediatric brain tumors

21.09.2011
Regulatory protein represents potential drug target

Medulloblastomas constitute the most frequent class of malignant childhood brain tumor. Tumors of this type arise due to the uncontrolled proliferation of immature nerve cells in the developing brain, and there is no targeted treatment available.

A research team based at LMU‘s Center for Neuropathology and Prion Research and led by Privatdozent Dr. Ulrich Schüller has now demonstrated that the regulatory protein FoxM1 is essential for the continued growth of these tumor cells. Moreover, the level of FoxM1 expressed in the cells is significantly, and negatively, correlated with a patient’s survival time.

The protein therefore provides a useful prognostic marker, which should allow oncologists to gauge the malignancy of tumors and select the most effective therapeutic strategy for the individual patient. Furthermore, FoxM1 may provide a novel point of attack for the development of new ways to treat the condition. Schüller and his team were able to reduce FoxM1 levels in tumor cells by exposing them to the antibiotic siomycin A, and showed that the drug also inhibits tumor growth. “If further work on laboratory cell cultures and in living organisms confirms these results, siomycin could turn out to be an effective drug for the treatment of medulloblastoma,” Schüller says. (Clinical Cancer Research, published OnlineFirst 14.September 2011)

Research conducted over the past 10 years has shown that medulloblastomas arise as a result of aberrant activation of certain molecular signaling pathways. Schüller and his team set out to determine whether the transcription factor FoxM1 plays a role in supporting the growth of this type of tumor and, if so, whether it might serve as a drug target for the development of an effective therapy for the disease.

Transcription factors determine the suite of proteins present in a given cell by defining which of the genes encoded in the genomic DNA are transcribed into RNA copies that can program protein synthesis. The so-called Forkhead-box (Fox) proteins are transcription factors that are particularly concerned with the regulation of cell growth, division and differentiation, and fully differentiated cells do not proliferate further. FoxM1 activates genes that promote cell division and simultaneously turns off genes that inhibit proliferation. Since uncontrolled proliferation is the basic hallmark of cancer cells, understanding and manipulating the function of FoxM1 has become a focus of cancer research. In several different types of cancer, including cancers of the breast, lung and prostate gland, increased amounts of FoxM1 have been found in tumor tissue. Indeed the protein has been shown to be necessary for growth of these tumors. Schüller and his team have now shown that this also true for medulloblastomas.

“One important result was that the amount of FoxM1 present in medulloblastoma cells is correlated with patient survival time,” says Schüller. Since it is relatively easy to estimate FoxM1 levels using laboratory tests, the molecule could possibly be used as a prognostic marker to guide the choice of treatment for each patient. Modern therapeutic options for medulloblastoma involve surgical removal of the tumor, followed by radiation and chemotherapy to eliminate any surviving tumor cells, but this approach is associated with serious side-effects. Furthermore, there are six different subtypes of medulloblastoma, which differ markedly in their malignancy and clinical prognosis. “That is why a good prognostic marker with which one could predict the aggressivity of tumors would be so useful,” says Schüller. The clinician could then adapt the therapeutic approach to the patient’s individual needs, and thus avoid using a sledgehammer to crack a nut.

Since FoxM1 is indispensable for the growth of medulloblastoma cells, it represents a potentially ideal drug target. With the aid of the antibiotic siomycin A, which specifically inhibits the production of FoxM1, Schüller was indeed able to inhibit the growth of medulloblastoma cells. These findings confirm and extend results obtained by other groups who have reported that siomycin A also hinders the growth of breast cancer cells. – And most importantly, Schüller‘s experiments showed that although FoxM1 is essential for tumor growth, other factors can apparently substitute for it during normal development. Hence blocking the action of FoxM1 by administering siomycin A should have no untoward effects on normal cells. Thus the antibiotic may make it possible, for the first time, to intervene directly and specifically in the process that gives rise to medulloblastomas, and provide the first therapeutic option that targets a major driver of the growth of such tumors.

The work was carried out by the Max Eder Junior Research Group in Pediatric Neuro-oncology, which is led by Ulrich Schüller and is supported by grants from the Deutsche Krebshilfe. (göd/PH)

Publication:
Expression of FoxM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients.
M. Priller, J. Pöschl, L. Abrao, A.O. von Bueren, Y.-J. Cho, S. Rutkowski, H.A. Kretzschmar, U. Schüller
Clinical Cancer Research, Published OnlineFirst 14. September 2011
doi: 10.1158/1078-0432.CCR-11-1214
Contact:
Priv.-Doz. Dr. med. Ulrich Schüller
Center for Neuropathology
LMU Munich
Phone: +49 89 2180 78114
Fax: +49 89 2180 78037
Email: ulrich.schueller@med.uni-muenchen.de

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
http://www.neuropathologie.med.uni-muenchen.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>