Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pearls to Prevent Relaxation

29.04.2014

Additive stops aging in super glassy polymer membranes

Putting a stop to aging has now been made possible for highly porous polymer membranes whose efficiency in the separation of gases falls off fast when parts of their polymer chains rearrange, as so do their pores.

In the journal Angewandte Chemie , a team of Australian and American researchers has now introduced a method for preventing this relaxation of the polymer chains: special porous particles made of an aromatic framework incorporate the polymer chains and hold them in their original position.

Separation processes like purification and adsorption are especially energy-intensive procedures; it is thus correspondingly important to find alternatives to replace existing technologies.

One possible approach is gas separation using polymer membranes. The theory behind this separation technique is that different gases pass through the membrane at different rates. This allows for the separation of CO2 from nitrogen, for example, which is relevant for carbon capture from flue gases. Currently, liquid absorbents that operate in a batch rather than continuous process are typically used.

The polymer membranes used must be extremely porous, so that as much of the surface area as possible is accessible to the gas molecules. It is no problem to produce highly porous membranes by using the appropriate “molds”.

However, any celebration of the high separation performance of these super glassy membranes, as they are known, does not last long as the membranes “age”. Despite the rigid state of the polymer, individual polymer segments are not fully “frozen” into position but can move to some extent. For thermodynamic reasons, the polymer chains attempt to stay as evenly distributed as possible.

This also causes them to fill the empty space within the pores. Because of their residual mobility, the polymer chains “relax” little by little, slowly reducing the free volume of the pores. The separation performance of the membrane falls off correspondingly. It has not previously been possible to effectively halt this process.

Led by Matthew R. Hill and Richard D. Noble, a team from the Division of Materials Science and Engineering at the Commonwealth Scientific and Industrial Research Organization (CSIRO) and the University of Colorado (USA) has now developed a method that prevents aging of super glassy membranes.

The trick is to include a specific additive during production of the membranes. The additive consists of porous microparticles made of a special three-dimensional framework of aromatic compounds and carbon atoms. The microparticles are strung along the particle chains like pearls on a string. This causes the chains to be “frozen” in place.

The pores remain as open as they were when first manufactured and the membrane does not age. As a side effect, the porous aromatic microparticles improve the ability of the membranes to separate nitrogen and carbon dioxide up to three-fold.

About the Author

Dr. Matthew Hill is a senior research scientist with the CSIRO, Australia’s national science agency. He specialises in ultraporous materials with applications in separation, storage and triggered release. He is a 2014 awardee of the MIT Technology Teview ‘Innovators under 35’ award for the South-East Asia region.

Author: Matthew R. Hill, CSIRO Division of Materials Science and Engineering, Clayton South (Australia), https://wiki.csiro.au/display/MEWE/Matthew+Hill

Title: Ending Aging in Super Glassy Polymer Membranes

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402234

Dr. Matthew Hill | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Aging Engineering Membranes Polymer Relaxation Super compounds volume

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>