Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peanut worms are annelids

03.03.2011
The phylum Annelida has just gained a new member / Peanut worm is no longer recognized as separate group

Recent molecular phylogenetic analysis has shown that the marine animals known as peanut worms are not a separate phylum, but are definitely part of the family of annelids, also known as segmented worms. This is a classification that seemed questionable in the past in view of the fact that peanut worms – or the Sipunculidae, to give them their scientific name – have neither segments nor bristles.


Sipunculus nudus of the group of Sipunculidae with a length of about 8 centimeters. photo/©: Dr Anja Schulze, Texas A&M University at Galveston, USA

The latter are considered typical characteristics of annelids, which include more than 16,500 identified species and to which our common earthworm belongs. "Our molecular data clearly demonstrates that there is no doubt anymore that the Sipunculidae should be classified as members of these segmented worms," explains Dr Bernhard Lieb of the Institute of Zoology at Johannes Gutenberg University Mainz (JGU). The results were obtained as part of a broad study in which the phylogenetic development and relationships within the phylum Annelida were analyzed in terms of basic molecular biology to be then re-evaluated. Participating in the project are the universities of Osnabrück, Potsdam, Mainz, and Leipzig, together with the Max Planck Institute of Molecular Genetics in Berlin. The results have now been published online in the journal Nature.

"The relationships between the various annelids with regard to both morphological and molecular biological aspects have been a matter of dispute," states Lieb. Segmented worms are the most prevalent of marine macrofauna – their habitat ranges from tidal zones to the deep oceans. Usually, they have been divided into two main classes: the Clitellata, which have few bristles, e.g. earthworms, and leeches on the one hand and the Polychaeta, literally the 'many bristled', on the other hand. The evolutionary and deep branching patterns of annelid lineage are still the subject of on-going scientific debate, although it has become increasingly clear that other groups that had previously been classified separately, such as peanut worms and beard worms, are actually members of this phylum. By means of identifying some 48,000 amino acid positions in 34 different representatives of the phylum Annelida, the research group headed by the universities of Osnabrück and Potsdam has put together the hitherto most detailed database for the family of segmented worms. This has enabled the group to re-evaluate and reconstruct the phylogenetic interrelationships and evolution of this extensive and highly diverse group of animals.

The molecular data on Sipunculus nudus – the peanut worm – gathered by the team in Mainz led by Bernhard Lieb shows that the genetic characteristics of the worm, which lives in sand and silt at the bottom of the sea, clearly indicates that it is a member of the annelid family. In evolutionary terms the peanut worm is likely to be a basal group that diverged very early during evolution. It is conjectured on the basis of the sparse fossil record that the annelids first appeared in the Cambrian Period, roughly 550-490 million years ago. "We assume that segmentation was a very early characteristic of the annelids and that the peanut worm has lost its segmentation during the course of evolution," clarifies Lieb.

Primarily, new DNA sequencing technologies, so-called next-generation sequencing (NGS), made such comprehensive genetic investigations become possible. The Illumina Hiseq2000 sequencer recently acquired by the Institute of Genetics at JGU can analyze vast amounts of data, and sequence up to 200 gigabases of DNA per run within a single week. This means that whole genomes can be sequenced in a relatively short time, opening up completely new avenues for wide-ranging research.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14040.php
http://www.staff.uni-mainz.de/lieb/

Further reports about: Annelida DNA Genetics Peanut Sipunculidae deep ocean molecular data segmented worms

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>