Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Peanut worms are annelids

The phylum Annelida has just gained a new member / Peanut worm is no longer recognized as separate group

Recent molecular phylogenetic analysis has shown that the marine animals known as peanut worms are not a separate phylum, but are definitely part of the family of annelids, also known as segmented worms. This is a classification that seemed questionable in the past in view of the fact that peanut worms – or the Sipunculidae, to give them their scientific name – have neither segments nor bristles.

Sipunculus nudus of the group of Sipunculidae with a length of about 8 centimeters. photo/©: Dr Anja Schulze, Texas A&M University at Galveston, USA

The latter are considered typical characteristics of annelids, which include more than 16,500 identified species and to which our common earthworm belongs. "Our molecular data clearly demonstrates that there is no doubt anymore that the Sipunculidae should be classified as members of these segmented worms," explains Dr Bernhard Lieb of the Institute of Zoology at Johannes Gutenberg University Mainz (JGU). The results were obtained as part of a broad study in which the phylogenetic development and relationships within the phylum Annelida were analyzed in terms of basic molecular biology to be then re-evaluated. Participating in the project are the universities of Osnabrück, Potsdam, Mainz, and Leipzig, together with the Max Planck Institute of Molecular Genetics in Berlin. The results have now been published online in the journal Nature.

"The relationships between the various annelids with regard to both morphological and molecular biological aspects have been a matter of dispute," states Lieb. Segmented worms are the most prevalent of marine macrofauna – their habitat ranges from tidal zones to the deep oceans. Usually, they have been divided into two main classes: the Clitellata, which have few bristles, e.g. earthworms, and leeches on the one hand and the Polychaeta, literally the 'many bristled', on the other hand. The evolutionary and deep branching patterns of annelid lineage are still the subject of on-going scientific debate, although it has become increasingly clear that other groups that had previously been classified separately, such as peanut worms and beard worms, are actually members of this phylum. By means of identifying some 48,000 amino acid positions in 34 different representatives of the phylum Annelida, the research group headed by the universities of Osnabrück and Potsdam has put together the hitherto most detailed database for the family of segmented worms. This has enabled the group to re-evaluate and reconstruct the phylogenetic interrelationships and evolution of this extensive and highly diverse group of animals.

The molecular data on Sipunculus nudus – the peanut worm – gathered by the team in Mainz led by Bernhard Lieb shows that the genetic characteristics of the worm, which lives in sand and silt at the bottom of the sea, clearly indicates that it is a member of the annelid family. In evolutionary terms the peanut worm is likely to be a basal group that diverged very early during evolution. It is conjectured on the basis of the sparse fossil record that the annelids first appeared in the Cambrian Period, roughly 550-490 million years ago. "We assume that segmentation was a very early characteristic of the annelids and that the peanut worm has lost its segmentation during the course of evolution," clarifies Lieb.

Primarily, new DNA sequencing technologies, so-called next-generation sequencing (NGS), made such comprehensive genetic investigations become possible. The Illumina Hiseq2000 sequencer recently acquired by the Institute of Genetics at JGU can analyze vast amounts of data, and sequence up to 200 gigabases of DNA per run within a single week. This means that whole genomes can be sequenced in a relatively short time, opening up completely new avenues for wide-ranging research.

Petra Giegerich | idw
Further information:

Further reports about: Annelida DNA Genetics Peanut Sipunculidae deep ocean molecular data segmented worms

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>