Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peanut worms are annelids

03.03.2011
The phylum Annelida has just gained a new member / Peanut worm is no longer recognized as separate group

Recent molecular phylogenetic analysis has shown that the marine animals known as peanut worms are not a separate phylum, but are definitely part of the family of annelids, also known as segmented worms. This is a classification that seemed questionable in the past in view of the fact that peanut worms – or the Sipunculidae, to give them their scientific name – have neither segments nor bristles.


Sipunculus nudus of the group of Sipunculidae with a length of about 8 centimeters. photo/©: Dr Anja Schulze, Texas A&M University at Galveston, USA

The latter are considered typical characteristics of annelids, which include more than 16,500 identified species and to which our common earthworm belongs. "Our molecular data clearly demonstrates that there is no doubt anymore that the Sipunculidae should be classified as members of these segmented worms," explains Dr Bernhard Lieb of the Institute of Zoology at Johannes Gutenberg University Mainz (JGU). The results were obtained as part of a broad study in which the phylogenetic development and relationships within the phylum Annelida were analyzed in terms of basic molecular biology to be then re-evaluated. Participating in the project are the universities of Osnabrück, Potsdam, Mainz, and Leipzig, together with the Max Planck Institute of Molecular Genetics in Berlin. The results have now been published online in the journal Nature.

"The relationships between the various annelids with regard to both morphological and molecular biological aspects have been a matter of dispute," states Lieb. Segmented worms are the most prevalent of marine macrofauna – their habitat ranges from tidal zones to the deep oceans. Usually, they have been divided into two main classes: the Clitellata, which have few bristles, e.g. earthworms, and leeches on the one hand and the Polychaeta, literally the 'many bristled', on the other hand. The evolutionary and deep branching patterns of annelid lineage are still the subject of on-going scientific debate, although it has become increasingly clear that other groups that had previously been classified separately, such as peanut worms and beard worms, are actually members of this phylum. By means of identifying some 48,000 amino acid positions in 34 different representatives of the phylum Annelida, the research group headed by the universities of Osnabrück and Potsdam has put together the hitherto most detailed database for the family of segmented worms. This has enabled the group to re-evaluate and reconstruct the phylogenetic interrelationships and evolution of this extensive and highly diverse group of animals.

The molecular data on Sipunculus nudus – the peanut worm – gathered by the team in Mainz led by Bernhard Lieb shows that the genetic characteristics of the worm, which lives in sand and silt at the bottom of the sea, clearly indicates that it is a member of the annelid family. In evolutionary terms the peanut worm is likely to be a basal group that diverged very early during evolution. It is conjectured on the basis of the sparse fossil record that the annelids first appeared in the Cambrian Period, roughly 550-490 million years ago. "We assume that segmentation was a very early characteristic of the annelids and that the peanut worm has lost its segmentation during the course of evolution," clarifies Lieb.

Primarily, new DNA sequencing technologies, so-called next-generation sequencing (NGS), made such comprehensive genetic investigations become possible. The Illumina Hiseq2000 sequencer recently acquired by the Institute of Genetics at JGU can analyze vast amounts of data, and sequence up to 200 gigabases of DNA per run within a single week. This means that whole genomes can be sequenced in a relatively short time, opening up completely new avenues for wide-ranging research.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14040.php
http://www.staff.uni-mainz.de/lieb/

Further reports about: Annelida DNA Genetics Peanut Sipunculidae deep ocean molecular data segmented worms

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>