Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peanut Allergies: Breakthrough Could Improve Diagnoses

20.12.2011
“Caution: This product may contain nuts.” It’s an increasingly common warning on food labels of all kinds, given the recent heightened awareness of the dangers of nut allergies. Roughly three million Americans suffer from peanut allergies; yet current diagnostic methods don’t detect every case.

New findings by University of Virginia scientists, however, may allow for the development of more sensitive diagnostic tools and a better understanding of nut allergies.

The study, “Structural and Immunologic Characterization of Ara h 1, a Major Peanut Allergen,” appeared in the November 11 issue of the Journal of Biological Chemistry.

Rethinking the Proteins
In the study, researchers determined that the emerging cutting-edge use of a recombinant, or artificially produced, protein in diagnostic tests may not be a suitable replacement for the natural protein Ara h 1, one of the major peanut allergens. This new insight will be critical in the effort to accurately diagnose peanut allergies and better understand their mechanisms.

“In allergy diagnostics, using a recombinant protein is thought to reveal more consistent results, as they are more homogenous than natural proteins. Individual protein molecules purified from a natural source show much more variation at a molecular level from one another,” says Wladek Minor, PhD, professor of molecular physiology and biological physics in the UVA School of Medicine and study co-leader.

“However, people are exposed to allergens from natural sources, not recombinant protein,” he continues, “and people develop antibodies to different fragments of natural allergens. If there is a significant difference between a natural source and the recombinant allergen used for allergy diagnosis, the recombinant allergen is not a good replacement in the test, because different types of allergies can be overlooked.”

In their analysis, researchers also found strong similarities in the structure of the Ara h 1 protein and those of other plant-seed proteins, which could help explain why patients with peanut allergies frequently also have allergies to tree nuts such as walnuts, almonds, and cashews.

Allergy Detection Could Save Lives
For children and adults who suffer from these serious allergies, accurate and early detection is critical. Allergic reactions to peanuts and tree nuts are the number-one cause of food-induced anaphylaxis, a life-threatening condition that develops rapidly after consumption. Armed with an accurate diagnosis, however, allergy sufferers can learn to avoid certain foods and equip themselves with a portable injection of epinephrine, the lifesaving treatment for anaphylaxis.

The team’s next steps in their research will be to determine exactly why peanut-allergic patients are often allergic to tree nuts as well, and to explain why peanut and tree-nut allergies are extremely difficult to outgrow, usually lasting a lifetime.

In addition to Minor, the international research team included Maksymilian Chruszcz, a member of Minor’s UVA research group; Soheila Maleki, from the U.S. Department of Agriculture; and Heimo Breiteneder, from the Medical University of Vienna. The multidisciplinary study included structural, bioinformatics, and immunological research on Ara h 1. Some methodology used in the project was developed as part of the NIH Protein Structure Initiative, and in particular the New York Structural Genomics Consortium.

Sally H. Jones | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>