Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peanut Allergies: Breakthrough Could Improve Diagnoses

20.12.2011
“Caution: This product may contain nuts.” It’s an increasingly common warning on food labels of all kinds, given the recent heightened awareness of the dangers of nut allergies. Roughly three million Americans suffer from peanut allergies; yet current diagnostic methods don’t detect every case.

New findings by University of Virginia scientists, however, may allow for the development of more sensitive diagnostic tools and a better understanding of nut allergies.

The study, “Structural and Immunologic Characterization of Ara h 1, a Major Peanut Allergen,” appeared in the November 11 issue of the Journal of Biological Chemistry.

Rethinking the Proteins
In the study, researchers determined that the emerging cutting-edge use of a recombinant, or artificially produced, protein in diagnostic tests may not be a suitable replacement for the natural protein Ara h 1, one of the major peanut allergens. This new insight will be critical in the effort to accurately diagnose peanut allergies and better understand their mechanisms.

“In allergy diagnostics, using a recombinant protein is thought to reveal more consistent results, as they are more homogenous than natural proteins. Individual protein molecules purified from a natural source show much more variation at a molecular level from one another,” says Wladek Minor, PhD, professor of molecular physiology and biological physics in the UVA School of Medicine and study co-leader.

“However, people are exposed to allergens from natural sources, not recombinant protein,” he continues, “and people develop antibodies to different fragments of natural allergens. If there is a significant difference between a natural source and the recombinant allergen used for allergy diagnosis, the recombinant allergen is not a good replacement in the test, because different types of allergies can be overlooked.”

In their analysis, researchers also found strong similarities in the structure of the Ara h 1 protein and those of other plant-seed proteins, which could help explain why patients with peanut allergies frequently also have allergies to tree nuts such as walnuts, almonds, and cashews.

Allergy Detection Could Save Lives
For children and adults who suffer from these serious allergies, accurate and early detection is critical. Allergic reactions to peanuts and tree nuts are the number-one cause of food-induced anaphylaxis, a life-threatening condition that develops rapidly after consumption. Armed with an accurate diagnosis, however, allergy sufferers can learn to avoid certain foods and equip themselves with a portable injection of epinephrine, the lifesaving treatment for anaphylaxis.

The team’s next steps in their research will be to determine exactly why peanut-allergic patients are often allergic to tree nuts as well, and to explain why peanut and tree-nut allergies are extremely difficult to outgrow, usually lasting a lifetime.

In addition to Minor, the international research team included Maksymilian Chruszcz, a member of Minor’s UVA research group; Soheila Maleki, from the U.S. Department of Agriculture; and Heimo Breiteneder, from the Medical University of Vienna. The multidisciplinary study included structural, bioinformatics, and immunological research on Ara h 1. Some methodology used in the project was developed as part of the NIH Protein Structure Initiative, and in particular the New York Structural Genomics Consortium.

Sally H. Jones | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>