Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peaches, plums, nectarines give obesity, diabetes slim chance

19.06.2012
Peaches, plums and nectarines have bioactive compounds that can potentially fight-off obesity-related diabetes and cardiovascular disease, according to new studies by Texas AgriLife Research.

The study, which will be presented at the American Chemical Society in Philadelphia next August, showed that the compounds in stone fruits could be a weapon against "metabolic syndrome," in which obesity and inflammation lead to serious health issues, according to Dr. Luis Cisneros-Zevallos, AgriLife Research food scientist.

"In recent years obesity has become a major concern in society due to the health problems associated to it," said Cisneros-Zevallos, who also is an associate professor at Texas A&M University. "In the U.S., statistics show that around 30 percent of the population is overweight or obese, and these cases are increasing every year in alarming numbers."

While he acknowledged that lifestyle, genetic predisposition and diet play a major role in one's tendency toward obesity, "the major concern about obesity is the associated disease known as metabolic syndrome.

"Our studies have shown that stone fruits – peaches, plums and nectarines – have bioactive compounds that can potentially fight the syndrome," Cisneros-Zevallos said. "Our work indicates that phenolic compounds present in these fruits have anti-obesity, anti-inflammatory and anti-diabetic properties in different cell lines and may also reduce the oxidation of bad cholesterol LDL which is associated to cardiovascular disease."

What is unique to these fruits, he said, is that their mixture of the bioactive compounds work simultaneously within the different components of the disease.

"Our work shows that the four major phenolic groups – anthocyanins, clorogenic acids, quercetin derivatives and catechins – work on different cells – fat cells, macrophages and vascular endothelial cells," he explained. "They modulate different expressions of genes and proteins depending on the type of compound.

"However, at the same time, all of them are working simultaneously in different fronts against the components of the disease, including obesity, inflammation, diabetes and cardiovascular disease," he explained.

Cisneros-Zevallos said this is believed to be the first time that "bioactive compounds of a fruit have been shown to potentially work in different fronts against a disease."

"Each of these stone fruits contain similar phenolic groups but in differing proportions so all of them are a good source of health promoting compounds and may complement each other," he said, adding that his team plans to continue studying the role of each type of compound on the molecular mechanisms and confirm the work with mice studies.

The studies on the health benefits of stone fruit are funded by the California Tree Fruit Agreement, The California Plum Board, the California Grape and Tree Fruit League and the Texas Department of Agriculture. The Cisneros-Zevallos lab team in this study included Freddy Ibanez, Paula Castillo, Paula Simons and Dr. Congmei Cao.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>