Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peach genome offers insights into breeding strategies for biofuels crops

25.03.2013
Rapidly growing trees like poplars and willows are candidate "biofuel crops" from which it is expected that cellulosic ethanol and higher energy content fuels can be efficiently extracted.

Domesticating these as crops requires a deep understanding of the physiology and genetics of trees, and scientists are turning to long-domesticated fruit trees for hints. The relationship between a peach and a poplar may not be obvious at first glance, but to botanists both trees are part of the rosid superfamily, which includes not only fruit crops like apples, strawberries, cherries, and almonds, but many other plants as well, including rose that gives the superfamily its name.

"The close relationship between peach and poplar trees is evident from their DNA sequence," said Jeremy Schmutz, head of the Plant Program at the U.S. Department of Energy Joint Genome Institute (DOE JGI).

In the March 24 edition of Nature Genetics, Schmutz and several colleagues were part of the International Peach Genome Initiative (IPGI) that published the 265-million base genome of the Lovell variety of Prunus persica.

"Using comparative genomics approaches, characterization of the peach sequence can be exploited not only for the improvement and sustainability of peach and other important tree species, but also to enhance our understanding of the basic biology of trees," the team wrote. They compared 141 peach gene families to those of six other fully sequenced diverse plant species to unravel unique metabolic pathways, for instance, those that lead to lignin biosynthesis—the molecular "glue" that holds the plant cells together—and a key barrier to deconstructing biomass into fuels.

For bioenergy researchers, the size of the peach genome makes it ideal to serve as a plant model for studying genes found in related genomes, such as poplar, one of the DOE JGI's Plant Flagship Genomes (http://bit.ly/JGI-Plants), and develop methods for improving plant biomass yield for biofuels.

"One gene we're interested in is the so-called "evergreen" locus in peaches, which extends the growing season," said Daniel Rokhsar, DOE JGI Eukaryotic Program head under whose leadership sequencing of the peach genome began back in 2007. "In theory, it could be manipulated in poplar to increase the accumulation of biomass."

The publication comes three years after the International Peach Genome Consortium publicly released the draft assembly of the annotated peach genome on the DOE JGI Plant portal Phytozome.net and on other websites. The decision to sequence the peach genome was first announced during the 2007 Plant and Animal Genome XI Conference. Learn more about poplar and DOE JGI Plant Flagship Genomes at http://genome.jgi.doe.gov/programs/plants/flagship_genomes.jsf.

In the United States, the Initiative was funded by the U.S. Department of Energy Office of Science and led by researchers at the DOE JGI, The HudsonAlpha Institute for Biotechnology, Clemson University, North Carolina State University, and Washington State University. Additional support was contributed by U.S. Department of Agriculture and by the Energy Biosciences Institute, of the University of California, Berkeley, who supported senior author Therese Mitros. The Italian government also supported this international effort, including the work of first author Ignazio Verde of the Fruit Tree Research Centre/Agricultural Research Council in Rome, Italy. Contributions were also made from research institutes in Chile, Spain, and France.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>