Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New patterns found in the genetic relationship of 5 major psychiatric disorders

12.08.2013
Nature Genetics study co-authored by VCU expert

An international consortium has shown for the first time evidence of substantial overlap of genetic risk factors shared between bipolar disorder, major depressive disorder and schizophrenia and less overlap between those conditions and autism and attention deficit-hyperactivity disorder (ADHD), according to a study published this week in Nature Genetics' Advance Online publication.

The root cause of psychiatric illnesses such as bipolar disorder, major depressive disorder schizophrenia, autism and ADHD is not fully understood. For more than 125 years, clinicians have based diagnosis on a collection of symptoms observed in patients.

But, scientists have since identified that the five psychiatric disorders share a common genetic link and are now moving toward understanding the molecular underpinnings of psychiatric illness. The precise degree to which these disorders share common ground has remained unknown, until now.

The project is led by the Cross-Disorder Group of the Psychiatric Genomics Consortium and is the largest genetic study of psychiatric illness to date.

The findings provide insight into the biological pathways that may predispose an individual to disease and could ultimately lead to the development of new therapeutic avenues to treat the five major psychiatric illnesses.

"This is a very large scale study using a new, innovative statistical method," said study co-senior author Kenneth S. Kendler, M.D., professor of psychiatry, and human and molecular genetics in the Virginia Commonwealth University School of Medicine, and an internationally recognized psychiatric geneticist.

"Prior to this model, we have not been able to address these questions. These results give us by far the clearest picture available to date of the degree of genetic similarity between these key psychiatric disorders. We hope that this will help us both in developing a more scientifically based diagnostic system and understanding the degree of sharing of the biological foundation these illnesses," he said.

The study builds on findings published earlier this year in The Lancet, which reported that specific single nucleotide polymorphisms, or SNPs, are associated with a range of psychiatric disorders that can occur during childhood or adulthood.

Next, the group will examine other disorders for which molecular genetic data is accumulating including eating disorders, obsessive compulsive disorder and drug use disorders.

Since 2007, the Cross-Disorder Group of the Psychiatric Genomics Consortium has reviewed scientific literature of genome-wide association studies, or GWAS, on psychiatric disorders. To date, GWAS data from more than 19 countries has been gathered by the consortium.

The Nature Genetics study is titled, "Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs."

This research was supported by the Australian Research Council (FT0991360 and DE130100614) and the Australian National Health and Medical Research Council (613608, 1011506 and 1047956). The PGC Cross-Disorder Group is supported by National Institute of Mental Health (NIMH) grant U01 MH085520. Support also came from the Netherlands Scientific Organization (NOW; 480-05-003). The work was also supported by a number of government grants from other countries, along with substantial private and foundation support.

Eric Peters | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>