Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of Chromosome Abnormality: The Key to Cancer?

24.01.2012
Chromosome aberrations happen in pairs when it comes to cancer, TAU research finds
A healthy genome is characterized by 23 pairs of chromosomes, and even a small change in this structure — such as an extra copy of a single chromosome — can lead to severe physical impairment. So it's no surprise that when it comes to cancer, chromosomal structure is frequently a contributing factor, says Prof. Ron Shamir of the Blavatnik School of Computer Science at Tel Aviv University.

Now Prof. Shamir and his former doctoral students Michal Ozery-Flato and Chaim Linhart, along with fellow researchers Prof. Shai Izraeli and Dr. Luba Trakhtenbrot from the Sheba Medical Center, have combined techniques from computer science and statistics to discover that many chromosomal pairs are lost or gained together across various cancer types. Moreover, the researchers discovered a new commonality of chromosomal aberrations among embryonic cancer types, such as kidney, skeleton, and liver cancers.

These findings, recently published in Genome Biology, could reveal more about the nature of cancer. As cancer develops, the genome becomes increasingly mutated — and identifying the pattern of mutation can help us to understand the nature and the progression of many different kinds of cancer, says Prof. Shamir.
As cancer progresses, the structure of chromosomes is rearranged, individual chromosomes are duplicated or lost, and the genome becomes abnormal. Some forms of cancer can even be diagnosed by identifying individual chromosomal aberrations, notes Prof. Shamir, pointing to the example of a specific type of leukemia that is caused by small piece of chromosome 9 being moved to chromosome 22.

When analyzing many different kinds of cancer, however, the researchers discovered that chromosomal aberrations among different cancers happen together in a noticeable and significant way. The researchers studied a collection of more than fifty thousand cancer karyotypes — representations of chromosomal layouts in a single cell — and charted them according to commonalities. The researchers were not only able to confirm different chromosomal aberrations that appeared in specific cancer types, but also for the first time identified a broader effect of pairs of chromosomes being lost or gained together across different cancer types.

It was also the first time that researchers saw a connection among solid kidney, skeleton, and liver cancers. While it was known that these cancers all develop in the embryo, they were previously analyzed independently. The TAU researchers have now confirmed that they share chromosomal characteristics and aberrations, much like various forms of leukemia or lymphomas.

Aberrations a driving force for cancer

Under normal circumstances, even a small change to a person's chromosomal structure can be devastating. For example, Down's syndrome is caused by a single extra copy of Chromosome 21. "But in cancer, there are many cases of extra or missing chromosomes. Yet cancer cells thrive more effectively than other cells," Prof. Shamir says.

Prof. Shamir hopes that future investigation into these chromosomal aberrations will give researchers more clues into why something that is so detrimental to our healthy development is so beneficial to this disease. Cancer is the result of sequences of events, he says, each causing the genome to become more mutated, mixed, and duplicated. Tracking these changes could aid our understanding of the driving forces of cancer's progress.

Prof. Shamir heads the Edmond J. Safra Program for Bioinformatics and holds the Raymond and Beverly Sackler Chair in Bioinformatics.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Abnormality Bioinformatics Chromosom 15 Tau liver cancer

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>