Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Patients with Epidermolysis Bullosa (EB) Suffer Extreme Pain – MDC Researchers Discover Causes

08.07.2011
For patients suffering from epidermolysis bullosa (EB), a hereditary skin disease, even a gentle touch is extremely painful.

Now Dr. Li-Yang Chiang, Dr. Kate Poole and Professor Gary R. Lewin of the Max Delbrück Center for Molecular Medicine (MDC) in Berlin-Buch have discovered the causes underlying this disease.

Due to a genetic defect, individuals with EB cannot form laminin-332, a structural molecule of the skin that in healthy individuals inhibits the transduction of tactile stimuli and neuronal branching (Nature Neuroscience, doi: 10.1038/nn.2873)*. According to the findings of the MDC researchers, this explains why EB patients are more sensitive to touch and experience it as painful.

Even the slightest touch causes a stinging sensation like being stabbed with pins; the body is covered with blisters and the skin is inflamed in many places. Young patients with epidermolysis bullosa are often called “butterfly children” because their skin is as fragile as a butterfly’s wing. Because of the severe pain associated with the disease, EB sufferers hardly have any chance to lead a normal life. Even walking is a torment because of the pressure on the soles of the feet.

Due to a genetic defect, the patients’ outer skin layer (epidermis) separates from the underlying skin layer (dermis), and blisters (bullosa) are formed. EB patients are deficient in laminin-332, a structural molecule normally found between the skin cells in the extracellular matrix which serves as a kind of cellular “glue” between the two skin layers.

The new findings of the MDC researchers show that in healthy individuals, laminin-332 has other important functions as well: It inhibits touch transduction and prevents the branching of the sensory neurons that are receptive to tactile stimuli in the skin.

At their endings, sensory neurons have mechanosensitive ion channels. These are proteins in the cell membrane through which charged particles can flow into the cell in a controlled manner. Upon touch, pressure on the extracellular matrix actuates a tether mechanism on the ion channels, thus opening the channels and allowing the charged particles to flow through. This excites the neuron, thus enabling the stimulus to be perceived.

Unsuppressed mechanotransduction
In experiments using cell cultures, the MDC researchers found that physical stimuli trigger ion currents in all neurons not surrounded by laminin-332. In neurons growing on laminin-332, by contrast, the number of responsive cells was much reduced. “To a great extent, laminin-332 blocks the tether mechanism that opens the ion channels, thus impeding stimulus transduction. Because patients with epidermolysis bullosa are deficient in laminin-332, the transduction of the stimulus is unsuppressed. Their sensory neurons are excited much more strongly, and thus they react much more sensitively to mechanical stimuli,” Professor Lewin explained.

Furthermore, in the skin tissue of EB patients the MDC researchers found that sensory neurons showed much more branching than in the skin of healthy individuals. “From cell-culture experiments we know that laminin-332 inhibits neuronal branching. Without laminin-332 this inhibition does not take place. Presumably, this effect also contributes to the increased perception of tactile stimuli,” Professor Lewin said.

In further studies the researchers hope to find drug targets for therapy. However, much has already been achieved: “Because the causal mechanisms are now understood, we can focus on the patient’s pain situation and on administering more efficient pain therapies,” he added. “We recommend that in treating the disease, neurologists should be consulted in addition to dermatologists.

*Laminin–332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons

Li-Yang Chiang1,5, Kate Poole1,5, Beatriz E. Oliveira2, Neuza Duarte1,Yinth Andrea Bernal Sierra1, Leena Bruckner-Tuderman3, Manuel Koch2, Jing Hu1,4 and Gary R. Lewin1

1Department of Neuroscience, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany. 2Institute for Oral and Musculoskeletal Biology, Center for Biochemistry, Department of Dermatology, and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany.3Department of Dermatology and Freiburg Institute for Advanced Studies, School of Life Sciences LifeNet, University of Freiburg, Freiburg, Germany. 4Center for Integrative Neuroscience, Tübingen, Germany

5These authors contributed equally to this work.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>