Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patient stem cells used to make 'heart disease-on-a-chip'


Cross-Harvard collaboration explores new possibilities for personalized medicine

Harvard scientists have merged stem cell and 'organ-on-a-chip' technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

Researchers use modified RNA transfection to correct genetic dysfunction in heart stem cells derived from Barth syndrome patients. The series of images show how inserting modified RNA into diseased cells causes the cells to produce functioning versions of the TAZ protein (first image: in green) that correctly localize in the mitochondria (second image: in red). When the images are merged to demonstrate this localization, green overlaps with red, giving the third image a yellow color.

Credit: Gang Wang and William Pu/Boston Children's Hospital

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the 'organs-on-chips' expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editing—a technique pioneered by Harvard collaborator George Church, PhD—to mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

"You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function," said Parker, who has spent over a decade working on 'organs-on-chips' technology. "In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract.

"The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROS—a normal byproduct of cellular metabolism released by mitochondria—which had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder.

"We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle."

His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.

"We tried to thread multiple needles at once and it certainly paid off," Parker said. "I feel that the technology that we've got arms industry and university-based researchers with the tools they need to go after this disease."

Both Parker and Pu, who first talked about collaborating at a 2012 Stockholm conference, credit their partnership and scientific consilience for the success of this research. Parker asserted that the 'organs-on-chips' technology that has been a flagship of his lab only worked so fast and well because of the high quality of Pu's patient-derived cardiac cells.

"When we first got those cells down on the chip, Megan, one of the joint first authors, texted me 'this is working,'" he recalled. "We thought we'd have a much harder fight."

"When I'm asked what's unique about being at Harvard, I always bring up this story," Pu said. "The diverse set of people and cutting-edge technology available at Harvard certainly made this study possible."


The researchers also involved in this work include: Joint first authors Gang Wang, MD, of Boston Children's Hospital, and Megan McCain, PhD, who earned her degree at the Harvard School of Engineering and Applied Sciences and is now an assistant professor at the University of Southern California. Amy Roberts, MD, of Boston Children's Hospital, and Richard Kelley, MD, PhD, at the Kennedy Krieger Institute provided patient data and samples, and Frédéric Vaz, PhD, and his team at the Academic Medical Center in the Netherlands conducted additional analyses. Technical protocols were shared by Kenneth Chien, MD, PhD, at the Karolinska Institutet.

Kevin Kit Parker, PhD, is the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, a Core Faculty member of the Wyss Institute for Biologically Inspired Engineering, and a Principal Faculty member of the Harvard Stem Cell Institute.

William Pu, MD, is an Associate Professor at Harvard Medical School, a member of the Department of Cardiology at Boston Children's Hospital, and an Affiliated Faculty member of the Harvard Stem Cell Institute.

George Church, PhD, is a Professor of Genetics at Harvard Medical School and a Core Faculty member of the Wyss Institute of Biologically Inspired Engineering.

The work was supported by the Barth Syndrome Foundation, Boston Children's Hospital, the National Institutes of Health, and charitable donations from Edward Marram, Karen Carpenter, and Gail Federici Smith.

Cited: Wang, G., McCain, M., et. al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-a-chip technologies. Nature Medicine. May 11, 2014

Joseph Caputo | Eurek Alert!
Further information:

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>