Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Pathways in the Cell Interact to Spur Tumor Growth

31.03.2011
Inactivation of two pathways that regulate cell division profoundly disrupts cell-cycle control and leads to tumor growth, according to researchers from the University of Illinois at Chicago College of Medicine.

The researchers describe how the two pathways interact to produce their combined effect in a study in the journal Genes and Development that is available online.

Tumor growth occurs upon disruption of the regulation of the cell cycle, the cascade of events that result in the division and duplication of a cell. One critical pathway regulating the cell cycle is the retinoblastoma (Rb) tumor suppressor pathway. The Rb pathway is found to be mutated or functionally inactivated in nearly all human cancers.

Maxim Frolov, UIC associate professor of biochemistry and molecular genetics, models development of human cancer by studying inactivation of Rb in fruit flies. In flies, a deficiency in the Rb pathway alone, he says, surprisingly causes only subtle defects in cell proliferation, but does not result in a full-blown tumor.

"We wanted to understand why,” he said.

One possible explanation was that other regulatory pathways were working together with the Rb pathway. In their previous studies, the researchers had found a pathway called Hippo, which seemed to work with Rb in regulation of cell proliferation.

In the new study, Frolov and his colleagues showed that simultaneously inactivating both pathways led to a marked enhancement of tumor growth. The researchers were able to trace the mechanism responsible for the synergy between these two pathways. They found that inactivation of the Hippo and Rb pathways results in an up-regulaton of a unique set of genes.

“We saw that the genes important to cell proliferation and cell cycle regulation are inappropriately expressed in these cells,” Frolov said. The genes were not up-regulated when either the Rb or Hippo pathway alone was inactivated.

“We found that transcription factors -- proteins that turn genes on and off -- involved in each of the two pathways cooperate in inducing expression of these cell-cycle specific genes, resulting in inappropriate cell proliferation,” he said.

The way Hippo is able to cross-talk with the Rb pathway and disrupt cell-cycle regulation to grow tumors may have important implications for understanding the complexity of mutations in human cancers, Frolov said. The finding suggests that there may be other factors that work with Rb to promote tumor growth.

"We should be looking for more cooperating mutations in human cancers,” he said.

The work is the result of international collaboration between Frolov’s laboratory at UIC and Nuria Lopez-Bigas’s genomics group at the University of Pompeu Fabra in Barcelona, Spain. Brandon Nicolay and Battuya Bayarmagnai of UIC's department of biochemistry and molecular genetics and Abul B.M.M.K. Islam of the University Pampeu Fabra contributed to the study. Funding was provided by grants from the National Institutes of Health and the Spanish Ministerio de Educacion y Ciencia and Agència de Gestió d'Ajuts Universitaris i de Recerca of the Catalonian government and from a scholar award from the Leukemia and Lymphoma Society and a NIH National Research Service Award.

For more information about UIC, visit www.uic.edu

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>