Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathway controlling cell growth revealed

18.02.2013
A Melbourne-based research team has discovered a genetic defect that can halt cell growth and force cells into a death-evading survival state.
The finding has revealed an important mechanism controlling the growth of rapidly-dividing cells that may ultimately lead to the development of new treatments for diseases including cancer.

The discovery was made by Associate Professor Joan Heath, Dr Yeliz Boglev and colleagues at the Melbourne-Parkville Branch of the Ludwig Institute for Cancer Research. Dr Kate Hannan, Associate Professor Rick Pearson and Associate Professor Ross Hannon at the Peter MacCallum Cancer Centre, also contributed to the work, which was published in the journal PLOS Genetics this month.

Associate Professor Heath, a Ludwig Institute Member who recently transferred her research group to the Walter and Eliza Hall Institute, said the discovery was made while studying zebrafish embryos that harbour genetic mutations which prevent rapid cell growth during organ development. “Zebrafish embryos provide us with a great laboratory model for these studies because they are transparent, an attribute that allows us to track the growth of rapidly developing organs in live animals under a simple microscope. Moreover, the genes controlling growth and proliferation of developing tissues are essentially identical in zebrafish and humans, and are known to be frequently commandeered by cancer cells.”

“We discovered that a mutation in a relatively under-studied gene called pwp2h leads to the faulty assembly of ribosomes, the ‘protein factories’ of cells, and stops cells from dividing,” she said. “What was intriguing was that cells under stress from ribosome failure did not die. Instead, the cells switched on a survival mechanism called autophagy and began obtaining nutrients by digesting their own intracellular components.”

Ribosomes are large molecular machines in cells that manufacture proteins, and are critical for cell growth and division. Currently, there is great interest in developing therapeutics to block ribosome production, as a strategy to prevent cancer cells from dividing.

“Our research could have implications for this type of cancer treatment,” Associate Professor Heath said. “We showed that when ribosome assembly is disrupted, cells stop growing as desired, but to our surprise they enter a survival state. An anti-cancer treatment that inadvertently promotes the survival of cancer cells through autophagy is clearly not desirable. However, our findings in zebrafish show that if ribosome assembly is blocked and, at the same time, autophagy is inhibited, cells die rapidly. It is possible that a combination of inhibitors that block ribosome function and autophagy could provide an effective anti-cancer treatment,” she said.

Associate Professor Heath’s group is continuing its research at the Walter and Eliza Hall Institute, examining other genetic mutations in zebrafish that disrupt cell growth and division. “We are keen to enhance our approach by applying existing research technologies at the institute,” she said. “We have identified a number of cellular processes that rapidly dividing cells – including cancer cells – depend on, and the next stage is to test whether they could provide new targets for anti-cancer therapy.”

The research was supported by the National Health and Medical Research Council and the Victorian Government.
For further information

Vanessa Solomon
Communications Adviser
Ph: +61 3 9345 2971
Mob: +61 431 766 715
Email: solomon@wehi.edu.au

Vanessa Solomon | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>