Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathway controlling cell growth revealed

18.02.2013
A Melbourne-based research team has discovered a genetic defect that can halt cell growth and force cells into a death-evading survival state.
The finding has revealed an important mechanism controlling the growth of rapidly-dividing cells that may ultimately lead to the development of new treatments for diseases including cancer.

The discovery was made by Associate Professor Joan Heath, Dr Yeliz Boglev and colleagues at the Melbourne-Parkville Branch of the Ludwig Institute for Cancer Research. Dr Kate Hannan, Associate Professor Rick Pearson and Associate Professor Ross Hannon at the Peter MacCallum Cancer Centre, also contributed to the work, which was published in the journal PLOS Genetics this month.

Associate Professor Heath, a Ludwig Institute Member who recently transferred her research group to the Walter and Eliza Hall Institute, said the discovery was made while studying zebrafish embryos that harbour genetic mutations which prevent rapid cell growth during organ development. “Zebrafish embryos provide us with a great laboratory model for these studies because they are transparent, an attribute that allows us to track the growth of rapidly developing organs in live animals under a simple microscope. Moreover, the genes controlling growth and proliferation of developing tissues are essentially identical in zebrafish and humans, and are known to be frequently commandeered by cancer cells.”

“We discovered that a mutation in a relatively under-studied gene called pwp2h leads to the faulty assembly of ribosomes, the ‘protein factories’ of cells, and stops cells from dividing,” she said. “What was intriguing was that cells under stress from ribosome failure did not die. Instead, the cells switched on a survival mechanism called autophagy and began obtaining nutrients by digesting their own intracellular components.”

Ribosomes are large molecular machines in cells that manufacture proteins, and are critical for cell growth and division. Currently, there is great interest in developing therapeutics to block ribosome production, as a strategy to prevent cancer cells from dividing.

“Our research could have implications for this type of cancer treatment,” Associate Professor Heath said. “We showed that when ribosome assembly is disrupted, cells stop growing as desired, but to our surprise they enter a survival state. An anti-cancer treatment that inadvertently promotes the survival of cancer cells through autophagy is clearly not desirable. However, our findings in zebrafish show that if ribosome assembly is blocked and, at the same time, autophagy is inhibited, cells die rapidly. It is possible that a combination of inhibitors that block ribosome function and autophagy could provide an effective anti-cancer treatment,” she said.

Associate Professor Heath’s group is continuing its research at the Walter and Eliza Hall Institute, examining other genetic mutations in zebrafish that disrupt cell growth and division. “We are keen to enhance our approach by applying existing research technologies at the institute,” she said. “We have identified a number of cellular processes that rapidly dividing cells – including cancer cells – depend on, and the next stage is to test whether they could provide new targets for anti-cancer therapy.”

The research was supported by the National Health and Medical Research Council and the Victorian Government.
For further information

Vanessa Solomon
Communications Adviser
Ph: +61 3 9345 2971
Mob: +61 431 766 715
Email: solomon@wehi.edu.au

Vanessa Solomon | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>