Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Paths Explored for Curbing Genetic Malfunctions

17.01.2013
Investigators probe mechanisms of RNA synthesis

One of the most extraordinary properties of living cells is their ability to precisely reproduce themselves through processes that transfer genetic information from one cell to the next.

However, there are times when one of the steps of information transfer, transcription, goes awry at the cellular level, potentially producing diseases such as cancer and other health disorders. Unraveling how those processes work and how substandard transcription can be prevented is a major goal of biomedical science. Progress in this area may also lead the way toward development of drugs that target the genetic transcription process in disease-causing microbes.

A research team led by Arkady Mustaev, PhD, of the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey-New Jersey Medical School, has published a study posted online by the Journal of Biological Chemistry, that describes an effort by the investigators to understand the underlying mechanisms of high precision (fidelity) of RNA synthesis by RNA polymerase, the major enzyme that promotes the transcription process. They attempted to influence the role of active center tuning (ACT) -- a mechanism they first identified -- in the process of transcription fidelity, which is the accurate copying of genetic information.

ACT is a rearrangement of the RNA polymerase catalytic center from an inactive to a catalytically proficient state. The investigators found that both reactions of NTP polymerization and hydrolytic RNA proofreading are performed by the same active center that includes two magnesium (Mg) ions coordinated by aspartate triad. The active center is normally “turned off” since it is missing one of Mg ions. Correct NTP substrates as well as misincorporated RNA residues can promote ACT by inclusion of the missing Mg ion through establishing recognition contacts in the active center. Incorrect substrates cannot trigger ACT and are rejected. The investigators also demonstrate that transcript cleavage factors Gre build on ACT mechanism by providing the residues for stabilization of catalytic Mg ion and for activation of the attacking water causing 3000-4000-fold reaction enhancement thereby strongly reinforcing proofreading.

The suggested ACT mechanism is fundamentally different from that proposed for DNA replication enzyme, DNA polymerase (DNAP) in which the active centers for DNA synthesis and proofreading are separated and discrimination between deoxy- and ribo-substrate is achieved through strict fitting requirements for the sugar rather than through active center rearrangement. In DNAP active center carboxylates stem from rigid scaffolds, while in multisubunit RNAP they reside in an apparently flexible loop. ACT is accompanied by significant re-shaping of the loop, which would not be possible in DNAP.

This study was supported by NIH grant RO1 GM-30717-21.

Journalists who wish to speak with Dr. Arkady Mustaev should contact Rob Forman, UMDNJ Chief of News Services, at 973-972-7276 or formanra@umdnj.edu .

About PHRI:
The Public Health Research Institute (PHRI) (www.phri.org) is a 71-year-old biomedical research organization that emphasizes translational approaches to overcome critical issues of infectious diseases. Founded in New York City, PHRI became an academic affiliate of the New Jersey Medical School-University of Medicine and Dentistry of New Jersey (UMDNJ) in 2006. PHRI’s 23 laboratories work on a wide range of infectious diseases issues including HIV and other viruses, TB, hospital and community acquired bacterial infections, fungal infections, biodefense and drug resistance. Fundamental knowledge of the disease process and its components is used to develop a new generation of diagnostics, therapeutics and vaccines. For more than 7 decades, PHRI’s culture of research innovation and excellence has led to important new discoveries in science and medicine.
About UMDNJ:
The University of Medicine and Dentistry of New Jersey (UMDNJ) is New Jersey’s only health sciences university with more than 6,000 students on five campuses attending three medical schools, the State’s only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jersey’s only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the State.

Rob Forman | Newswise
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>