Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Paths Explored for Curbing Genetic Malfunctions

17.01.2013
Investigators probe mechanisms of RNA synthesis

One of the most extraordinary properties of living cells is their ability to precisely reproduce themselves through processes that transfer genetic information from one cell to the next.

However, there are times when one of the steps of information transfer, transcription, goes awry at the cellular level, potentially producing diseases such as cancer and other health disorders. Unraveling how those processes work and how substandard transcription can be prevented is a major goal of biomedical science. Progress in this area may also lead the way toward development of drugs that target the genetic transcription process in disease-causing microbes.

A research team led by Arkady Mustaev, PhD, of the Public Health Research Institute (PHRI) at the University of Medicine and Dentistry of New Jersey-New Jersey Medical School, has published a study posted online by the Journal of Biological Chemistry, that describes an effort by the investigators to understand the underlying mechanisms of high precision (fidelity) of RNA synthesis by RNA polymerase, the major enzyme that promotes the transcription process. They attempted to influence the role of active center tuning (ACT) -- a mechanism they first identified -- in the process of transcription fidelity, which is the accurate copying of genetic information.

ACT is a rearrangement of the RNA polymerase catalytic center from an inactive to a catalytically proficient state. The investigators found that both reactions of NTP polymerization and hydrolytic RNA proofreading are performed by the same active center that includes two magnesium (Mg) ions coordinated by aspartate triad. The active center is normally “turned off” since it is missing one of Mg ions. Correct NTP substrates as well as misincorporated RNA residues can promote ACT by inclusion of the missing Mg ion through establishing recognition contacts in the active center. Incorrect substrates cannot trigger ACT and are rejected. The investigators also demonstrate that transcript cleavage factors Gre build on ACT mechanism by providing the residues for stabilization of catalytic Mg ion and for activation of the attacking water causing 3000-4000-fold reaction enhancement thereby strongly reinforcing proofreading.

The suggested ACT mechanism is fundamentally different from that proposed for DNA replication enzyme, DNA polymerase (DNAP) in which the active centers for DNA synthesis and proofreading are separated and discrimination between deoxy- and ribo-substrate is achieved through strict fitting requirements for the sugar rather than through active center rearrangement. In DNAP active center carboxylates stem from rigid scaffolds, while in multisubunit RNAP they reside in an apparently flexible loop. ACT is accompanied by significant re-shaping of the loop, which would not be possible in DNAP.

This study was supported by NIH grant RO1 GM-30717-21.

Journalists who wish to speak with Dr. Arkady Mustaev should contact Rob Forman, UMDNJ Chief of News Services, at 973-972-7276 or formanra@umdnj.edu .

About PHRI:
The Public Health Research Institute (PHRI) (www.phri.org) is a 71-year-old biomedical research organization that emphasizes translational approaches to overcome critical issues of infectious diseases. Founded in New York City, PHRI became an academic affiliate of the New Jersey Medical School-University of Medicine and Dentistry of New Jersey (UMDNJ) in 2006. PHRI’s 23 laboratories work on a wide range of infectious diseases issues including HIV and other viruses, TB, hospital and community acquired bacterial infections, fungal infections, biodefense and drug resistance. Fundamental knowledge of the disease process and its components is used to develop a new generation of diagnostics, therapeutics and vaccines. For more than 7 decades, PHRI’s culture of research innovation and excellence has led to important new discoveries in science and medicine.
About UMDNJ:
The University of Medicine and Dentistry of New Jersey (UMDNJ) is New Jersey’s only health sciences university with more than 6,000 students on five campuses attending three medical schools, the State’s only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jersey’s only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the State.

Rob Forman | Newswise
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>